Quadratic funktions

Wolfgang Kippels

November 30, 2022

Contents

1 Preface 4
2 Compilation of fundamental facts 5
2.1 Zero of a function 7
2.2 Vertexes 7
2.3 vertex form 10
2.4 Determining crossing points 11
3 Examples 12
3.1 Example 1 12
3.2 Example 2 13
3.3 Example 3 15
3.4 Example 4 17
3.5 Example 5 21
4 Exercises 24
4.1 Exercise 1: 24
4.2 Exercise 2: 24
4.3 Exercise 3: 24
4.4 Exercise 4: 24
4.5 Exercise 5: 24
4.6 Exercise 6: 24
4.7 Exercise 7: 24
4.8 Exercise 8: 24
4.9 Exercise 9: 25
4.10 Exercise 10: 25
4.11 Exercise 11: 25
4.12 Exercise 12: 25
4.13 Exercise 13: 25
4.14 Exercise 14: 25
4.15 Exercise 15: 25
4.16 Exercise 16: 25
4.17 Exercise 17: 25
4.18 Exercise 18: 26
4.19 Exercise 19: 26
4.20 Exercise 20: 26
4.21 Exercise 21: 26
4.22 Exercise 22: 26
4.23 Exercise 23: 26
4.24 Exercise 24: 26
4.25 Exercise 25: 27
4.26 Exercise 26: 27
4.27 Exercise 27: 27
4.28 Exercise 28: 27
4.29 Exercise 29: 27
4.30 Exercise 30: 28
4.31 Exercise 31: 28
4.32 Exercise 32: 28
4.33 Exercise 33: 28
4.34 Exercise 34: 28
4.35 Exercise 35: 28
5 Solutions 29
5.1 Exercise 1: 29
5.2 Exercise 2: 30
5.3 Exercise 3: 31
5.4 Exercise 4: 32
5.5 Exercise 5: 33
5.6 Exercise 6: 35
5.7 Exercise 7: 37
5.8 Exercise 8: 39
5.9 Exercise 9: 41
5.10 Exercise 10: 42
5.11 Exercise 11: 44
5.12 Exercise 12: 46
5.13 Exercise 13: 47
5.14 Exercise 14: 48
5.15 Exercise 15: 49
5.16 Exercise 16: 50
5.17 Exercise 17: 51
5.18 Exercise 18: 53
5.19 Exercise 19: 54
5.20 Exercise 20: 55
5.21 Exercise 21: 56
5.22 Exercise 22: 57
5.23 Exercise 23: 59
5.24 Exercise 24: 60
5.25 Exercise 25: 61
5.26 Exercise 26: 62
5.27 Exercise 27: 63
5.28 Exercise 28: 64
5.29 Exercise 29: 65
5.30 Exercise 30: 66
5.31 Exercise 31: 67
5.32 Exercise 32: 68
5.33 Exercise 33: 69
5.34 Exercise 34: 71
5.35 Exercise 35: 72

1 Preface

To create instructions like this it takes a lot of time and effort. Nevertheless, I provide this to the community free of charge. If you find this script helpful, I request you to fulfill the inter-generation contract, describes as below:

When you some time later will have finished your education and you have started your career (or later), please transmit your knowledge in a fitting way to the following generation.

If you want to make me happy, please send a small email to the following address: mail@dk4ek.de

Many thanks!

2 Compilation of fundamental facts

On the right you will find a diagramm of a typical quadratic funktion. The example represents this function:

$$
f(x)=x^{2}-4 x+3
$$

This curve shape is called parabola. The lowest point ${ }^{1}$ is called vertex of the parabola. This point is usually indicated with the letter V.

A quadratic function is any function, that fits in the normal form:

$$
\begin{gathered}
\text { normal form: } \\
f(x)=a x^{2}+b x+c
\end{gathered}
$$

In order to analyse, what kind of effect the parameter a has to the shape of the parabola, you can see below 8 different functions with a different value of the parameter a. In all functions is $b=0$ and $c=0$. The functional equations are:
$f_{1}(x)=0,2 x^{2}$
$f_{2}(x)=0,5 x^{2}$
$f_{3}(x)=1 x^{2}$
$f_{4}(x)=2 x^{2}$
$f_{5}(x)=-0,2 x^{2}$
$f_{6}(x)=-0,5 x^{2}$
$f_{7}(x)=-1 x^{2}$
$f_{8}(x)=-2 x^{2}$
It is easy to see, that all parabolas have a different shape. As the parameter \boldsymbol{a} is determining the shape of the parabola, it is called factor of shape. If the absolute value of \boldsymbol{a} is large $\left(f_{3}, f_{4}, f_{7}, f_{8}\right)$, the parabola is narrow, if \boldsymbol{a} is negative (f_{5} to f_{8}), the parabola is opened down-
 wards.

[^0]To demonstrate, that only parameter \boldsymbol{a} is responsible for the shape of the parabola, you see right 8 differert quadratic functions. All have parameter $a=1$, but different values for parameter b and c. The functional equations are:
$f_{1}(x)=x^{2}$
$f_{2}(x)=x^{2}-2 x$
$f_{3}(x)=x^{2}-2 x-2$
$f_{4}(x)=x^{2}-4 x-2$
$f_{5}(x)=x^{2}-4 x+2$
$f_{6}(x)=x^{2}+3 x$
$f_{7}(x)=x^{2}+3 x-2$
$f_{8}(x)=x^{2}+3 x+1$

Although you see a lot of confused lines, you can recognize, that all parabolas have the same shape. Only their positions are different.

Next we want to explore the impact of parameter \boldsymbol{c}. We can use the same functions f_{1} to f_{8} shown before for this purpose.

Let us look first to the functions f_{1}, f_{2} and f_{6}. In all of them is $c=0$. You should notice, that all parabolas pass through the coordinate origin. Here is $y=0$.

Also the functions f_{3}, f_{4} and f_{7} have the same value for parameter c, namely $c=-2$. All associated parabulas are hitting the y-axis at the same value, namely at $y=-2$.

Obviously the parameter \boldsymbol{c} gives us the value for the \boldsymbol{y}-intercept.
We can verify this finding with f_{5} und f_{8}. In f_{5} is $c=2$, the y-axis is hitted at $y=2$. In f_{8} is $c=1$, the y-axis is hitted at $y=1$. Obviously it is truth:

Parameter \boldsymbol{c} indicates the \boldsymbol{y}-intercept.

Note: Of course ist is possible to prove this result "correctly". When you calculate the value of the function $f(x)=a x^{2}+b x+c$ with $x=0$, you get $a \cdot 0^{2}=0$ and $b \cdot 0=0$. Then only the value of c is remaining.

Unfortunately the meaning of parameter b is not as evident as parameter a or c. Therefore I want to inspect this later in this script.

2.1 Zero of a function

Zero of a function is called the value x_{0}, that causes the value 0 of the function (the value $y=0$). To find possible zeros of a function, we have to set the formula term to 0 . I want to show the procedure with the example $f(x)=x^{2}-4 x+3$ from the beginning. We need the p - q-formula ${ }^{2}$ as a tool to solve the equation.

$$
\begin{aligned}
f\left(x_{0}\right) & =0 \\
x_{0}^{2}-4 x_{0}+3 & =0 \\
x_{01 / 02} & =-\frac{-4}{2} \pm \sqrt{\left(\frac{-4}{2}\right)^{2}-3} \\
& =2 \pm \sqrt{4-3} \\
x_{01 / 02} & =2 \pm 1 \\
x_{01}=1 & x_{02}=3
\end{aligned}
$$

Result: Zeros of the function are $x_{01}=1$ and $x_{02}=3$.
You can express this result also in an other way: The parabel cross the x-axis at $x_{01}=1$ and $x_{02}=3$.

2.2 Vertexes

What is a vertex of a parabula?
The definition is as told before: The vertex of a parabula is its lowest or its highest point.

Opposite you find the graph of this function:

$$
f(x)=2 x^{2}-8 x+6
$$

The vertex is marked with an V. the parabula is opened upwards, we only find a lowest point. There is no upward limit. Therefore is the vertex the lowest point.

Let us look to the details of the function graph. You see the vertex by reason of the symmetrie of the parabula exactly in the centre between the zeros. Because of this fact we can deduce a formula for finding the vertex. Let us first calculate the zeros of this example.

[^1]\[

$$
\begin{aligned}
f\left(x_{0}\right) & =0 \\
2 x_{0}^{2}-8 x_{0}+6 & =0 \\
x_{0}^{2}-4 x_{0}+3 & =0 \\
p & =-4 \\
q & =3 \\
x_{1 / 2} & =-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q} \\
x_{01 / 02} & =-\frac{-4}{2} \pm \sqrt{\left(\frac{-4}{2}\right)^{2}-3} \\
x_{01 / 02} & =2 \pm \sqrt{2^{2}-3} \\
x_{01 / 02} & =2 \pm 1
\end{aligned}
$$
\]

Without calculating the values in detail we can see by this formula, that the zeros are positioned symmetric to $x=2$, one 1 below and one 1 above. That means, that the number before the sign \pm must be the x-value x_{V} of the vertex. The vertex is positioned as we know in the center between the zeros.

Result: $x_{V}=2$
I want to use this realization, to deduce a simple formula, that shows us the x-value of the vertex $V\left(x_{V} \mid y_{V}\right)$ of a quadratic function.

I start with the normal form and calculate the zeros.

$$
\begin{array}{rlrl}
f(x) & =a x^{2}+b x+c & & \mid \text { set the formula term to } 0 \\
0 & =a x^{2}+b x+c & & \mid: a \\
0 & =x^{2}+\frac{b}{a} x+\frac{c}{a} & \mid \text { use } p \text { - } q \text {-formula } \\
x_{01 / 02} & =-\frac{b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}} & & \\
x_{01} & =-\frac{b}{2 a}+\sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}} & \\
x_{02} & =-\frac{b}{2 a}-\sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}} &
\end{array}
$$

I calculate the mean value, to get the x-value x_{V} of the vertex.

$$
\begin{aligned}
x_{V} & =\frac{x_{01}+x_{02}}{2} \\
x_{V} & =\frac{\left(-\frac{b}{2 a}+\sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}\right)+\left(-\frac{b}{2 a}-\sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}\right)}{2} \\
& =\frac{-2 \cdot \frac{b}{2 a}}{2} \\
x_{V} & =-\frac{b}{2 a}
\end{aligned}
$$

Result: If the equation of the function is given in the normal form

$$
f(x)=a x^{2}+b x+c
$$

we get the x-value $\mathbf{x}_{\mathbf{V}}$ of the vertex by using this formula:

vertex formula:

$$
x_{V}=-\frac{b}{2 a}
$$

Let us go back to our example.

$$
f(x)=2 x^{2}-8 x+6
$$

We calculate x_{V} by using the formula, we just have deduced:

$$
\begin{aligned}
x_{V} & =-\frac{b}{2 a} \\
& =-\frac{-8}{2 \cdot 2} \\
x_{V} & =2
\end{aligned}
$$

The corresponding y-value y_{V} can be calculated by putting x_{V} into the function formula. Our example looks like that:

$$
\begin{aligned}
y_{V} & =f\left(x_{V}\right) \\
& =2 x_{V}^{2}-8 x_{V}+6 \\
& =2 \cdot 2^{2}-8 \cdot 2+6 \\
y_{V} & =-2
\end{aligned}
$$

We got the vertex of our example like this: $V(2 \mid-2)$

2.3 vertex form

The functional equation of a quadratic function can not only be written in normal form, possible ist also the so called vertex form. We remember the normal form:

$$
f(x)=a x^{2}+b x+c
$$

When we write the functional equation in vertex form, it will look like this:
vertex form:

$$
f(x)=a \cdot\left(x-x_{V}\right)^{2}+y_{V}
$$

In this formula are $\mathbf{x}_{\mathbf{V}}$ and $\mathbf{y}_{\mathbf{V}}$ the coordinates of the vertex $V\left(x_{V} \mid y_{V}\right)$, parameter \boldsymbol{a} is the same, that we know from the normal form as factor of shape.

At this point I do not want to deduce this formula. It would be possible very easy by using the following formula for shifting a function graph. If we want to shift a function graph of a arbitrary function (not only a quadratic function) by the value x_{s} to the right and y_{s} upwards, we get the functional equation of the shifted function $f_{s}(x)$ by using this formula:

Shifted funktion:

$$
f_{s}(x)=f\left(x-x_{s}\right)+y_{s}
$$

I also do not want to prove this formula at this point. ${ }^{3}$
Important: The vertex form provides two benefits compared to the normal form.

1. If the functional equation of a quadratic function is given in vertex form, we immediate can read in it the coordinates of the vertex.
2. When we have to find out the functional equation of a quadratic function, and we know the factor of shape a and the coordinates of the vertex, we immediately can write down the functional equation.
[^2]
2.4 Determining crossing points

Also parabulas can have crossing points with each other. Opposite you see the function graphs of these functions:

$$
f_{1}(x)=x^{2}-6 x+3 \quad \text { and } \quad f_{2}(x)=-x^{2}+2 x-3
$$

In this case we have two crossing points, C_{1} and C_{2}. It is also possible, that the parabolas have a position, that they do not hit each other. For example we imagin, that the function graph of f_{1} would have a position 5 units higher. In this case the function
 graphs would run past without any hit. It is also possible, that the function graphs just touch each other with only one common point.

As we did it with linear functions ${ }^{4}$ we can find out crossing points by equating the formula terms. I want to show, how it can be done by using this example.

$$
\begin{aligned}
f_{1}\left(x_{V}\right) & =f_{2}\left(x_{V}\right) \\
x_{V}^{2}-6 x_{V}+3 & =-x_{V}^{2}+2 x_{V}-3 \\
2 x_{V}^{2}-8 x_{V}+6= & 0 \\
x_{V}^{2}-4 x_{V}+3= & 0 \\
x_{C 1 / 2}= & -\frac{-4}{2} \pm \sqrt{\left(\frac{-4}{2}\right)^{2}-3} \\
= & 2 \pm \sqrt{2^{2}-3} \\
= & 2 \pm 1 \\
& x_{C 2}=2+1=3 \\
x_{C 1}=2-1=1 & =2
\end{aligned}
$$

We get the corresponding y-values by putting the x-values into any desired functional equation, f_{1} or f_{2}. My arbitrary choice is f_{1}.

$$
\begin{aligned}
& y_{C 1}=f_{1}\left(x_{C 1}\right)=x_{C 1}^{2}-6 x_{C 1}+3=1^{2}-6 \cdot 1+3=-2 \\
& y_{C 2}=f_{1}\left(x_{C 2}\right)=x_{C 2}^{2}-6 x_{C 2}+3=3^{2}-6 \cdot 3+3=-6
\end{aligned}
$$

We have got these both crossing points: $C_{1}(1 \mid-2)$ and $C_{2}(3 \mid-6)$

[^3]
3 Examples

3.1 Example 1

A quadratic function has the vertex $V(-1 \mid 12)$ and a zero at $x_{0}=-3$. What is the functional equation?

Solution: As we know the vertex, we should use the vertex form as a method of resolution.

$$
\begin{aligned}
f(x) & =a \cdot\left(x-x_{V}\right)^{2}+y_{V} \\
& =a \cdot(x-(-1))^{2}+12 \\
f(x) & =a \cdot(x+1)^{2}+12
\end{aligned}
$$

Now only the parameter \boldsymbol{a} is missing. For the calculation we can use the known zero $x_{0}=-3$. If we calculate the value of the function at $x_{0}=-3$, we will get the value 0 .

$$
\begin{aligned}
f\left(x_{0}\right) & =0 \\
a \cdot\left(x_{0}+1\right)^{2}+12 & =0 \\
a \cdot(-3+1)^{2}+12 & =0 \\
a \cdot(-2)^{2}+12 & =0 \\
4 a+12 & =0 \\
4 a & =-12 \quad \mid-4 \\
a & =-3
\end{aligned}
$$

Using this value we can show the funtional equation in vertex form.

$$
f(x)=-3 \cdot(x+1)^{2}+12
$$

Now we have to transform the vertex form into the normal form. For that we transform the term in the brackets by using the first binomial formula. ${ }^{5}$

$$
\begin{aligned}
f(x) & =-3 \cdot(x+1)^{2}+12 \\
& =-3 \cdot\left(x^{2}+2 x+1\right)+12 \\
& =-3 x^{2}-6 x-3+12 \\
f(x) & =-3 x^{2}-6 x+9
\end{aligned}
$$

We get the searched funktion: $f(x)=-3 x^{2}-6 x+9$

[^4]
3.2 Example 2

A parabula passes through the points $P_{1}(3 \mid 9)$ and $P_{2}(4 \mid 19)$. She hits the y-axis at $y_{0}=3$. Where do we find her vertex?

Solution: A parabula is a quadratic function. So we can start with the normal form of a quadratic function:

$$
f(x)=a x^{2}+b x+c
$$

As the y-axis intercept is known as $y_{0}=3$, we also know the parameter c.

$$
c=y_{0}=3
$$

With this information we can concrete our functional equation:

$$
f(x)=a x^{2}+b x+3
$$

Now we can put the coordinates of the known points into the functional equation:

$$
\begin{array}{ll}
P_{1}(3 \mid 9): & f(3)=9 \Rightarrow a \cdot 3^{2}+b \cdot 3+3=9 \\
P_{2}(4 \mid 19): & f(4)=19 \Rightarrow a \cdot 4^{2}+b \cdot 4+3=19
\end{array}
$$

At first we simplify the two equations:

$$
\begin{aligned}
& \text { (1) } a \cdot 3^{2}+b \cdot 3+3=9 \\
& \begin{aligned}
\text { (2) } a \cdot 4^{2}+b \cdot 4+3 & =19 \\
\hline \text { (1) } 9 a+3 b+3 & =9 \quad \mid-3
\end{aligned} \\
& \left.\begin{array}{rl}
\text { (2) } & 16 a+4 b+3
\end{array}\right)=19 \quad \mid-3 \\
& \text { (2) } \quad 16 a+4 b=16
\end{aligned}
$$

This system of equations can be solved with any desired method. ${ }^{6}$ Arbitrary I choose the method of insertion. I dissolve equation (1) to b and insert the result into equation (2).

$$
\begin{array}{rl|l}
9 a+3 b & =6 & \mid-9 a \\
3 b & =6-9 a & \mid: 3 \\
b & =2-3 a
\end{array}
$$

Insertion in (2):

$$
\begin{aligned}
16 a+4 b & =16 \\
16 a+4 \cdot(2-3 a) & =16 \\
16 a+8-12 a & =16 \mid-8 \\
4 a & =8 \\
a & =2
\end{aligned}
$$

[^5]We insert this result into the converted equation (1) to get b.

$$
b=2-3 a=2-3 \cdot 2=2-6=-4
$$

With theese results we can concrete the functional equation:

$$
f(x)=2 x^{2}-4 x+3
$$

Now we have to calculate the coordinates of the vertex. The vertex formula will help us, to get them.

$$
\begin{aligned}
x_{V} & =-\frac{b}{2 a} \\
& =-\frac{-4}{2 \cdot 2} \\
x_{V} & =1
\end{aligned}
$$

The corresponding y-value y_{V} we get from the functional equation.

$$
\begin{aligned}
y_{V} & =f\left(x_{V}\right) \\
& =2 x_{V}^{2}-4 x_{V}+3 \\
& =2 \cdot 1^{2}-4 \cdot 1+3 \\
& =2-4+3 \\
y_{V} & =1
\end{aligned}
$$

The vertex we looked for is: $V(1 \mid 1)$

3.3 Example 3

A parabula with the shape factor $a=-1$ runs through the points $P_{1}(1 \mid 4)$ and $P_{2}(4 \mid 1)$. Calculate the vertex!

Solution: The normal form of the functional equation is:

$$
f(x)=a x^{2}+b x+c
$$

As the shape factor is nown as $a=-1$, we can concrete the functional equation:

$$
f(x)=-x^{2}+b x+c
$$

The coordinates of both points can be inserted.

$$
\begin{aligned}
& P_{1}(1 \mid 4): f(1)=4 \Rightarrow-1^{2}+b \cdot 1+c=4 \\
& P_{2}(4 \mid 1): f(4)=1 \Rightarrow-4^{2}+b \cdot 4+c=1
\end{aligned}
$$

At first we simplify the two equations:

$$
\begin{aligned}
(1) & -1^{2}+b \cdot 1+c
\end{aligned}=4 \quad \text { (1) }
$$

This system of equations can be solved with any desired method. ${ }^{7}$ As both equations have the same coefficient of c (it is 1), the method of subtraction should be beneficial, c immediately will disappear.

$$
\begin{aligned}
(1) \quad b+c & =5 \\
\text { (2) } 4 b+c & =17 \\
\hline 3 b & =12 \mid: 3 \\
\hline 3 & =4
\end{aligned}
$$

To get the value of c we put this solution into equation (1) or (2). Because equation (1) seems simpler to me, I use this one.

$$
\begin{aligned}
b+c & =5 \\
4+c & =5 \mid-4 \\
c & =1
\end{aligned}
$$

With theese solutions we can present the functional equation:

$$
f(x)=-x^{2}+4 x+1
$$

[^6]Now we have to calculate the coordinates of the vertex. The vertex formula will help us, to get them.

$$
\begin{aligned}
x_{V} & =-\frac{b}{2 a} \\
& =-\frac{4}{2 \cdot(-1)} \\
x_{V} & =2
\end{aligned}
$$

The corresponding y-value y_{V} we get from the functional equation.

$$
\begin{aligned}
y_{V} & =f\left(x_{V}\right) \\
& =-x_{V}^{2}+4 x_{V}+1 \\
& =-2^{2}+4 \cdot 2+1 \\
& =-4+8+1 \\
y_{V} & =5
\end{aligned}
$$

The vertex we looked for is: $V(2 \mid 5)$

3.4 Example 4

A firefighter wants to extinguish a fire in a building with the water jet comming out of his hose. The building has a distance of 8 meter to him. The water jet hits a window, 7,40 meter above the ground. The firefighter has the nozzle of the hose one meter above the ground in his hands. In a horizontal ditance of 5 meter the water jet has its maximum height. What is the value of the maximum height? The water jet has the shape of a parabula.

Solution: To solve this problem it is useful to place a coordinate system into the sketch plan. There are of course several positions to place it. But when we have decided a position, the functional equation will depend on this coordinate system.

In my example of solution I place the x-axis to the bottom of the earth. The y-axis I place through the nozzle of the hose in the firefighters hand. The point of the nozzle I mark with the letter N. The point, where the water jet
 hits the window, I mark with the letter $W . V$ is the vertex.

For all furter calculations I use the unit meter for all dimensions. So it is possible to omit all dimensions during the calculations. Using the known data we can write down all points in this way:

$$
N(0 \mid 1) \quad W(8 \mid 7,4) \quad V\left(5 \mid y_{V}\right)
$$

We have to find out the value of parameter y_{V}.
As the water jet has the shape of a parabula, the corrseponding function is a quadratic function. Therefore we get thwo different concepts for the solution:

1. Vertex form
2. Normal form

Variant 1 of solution: Let us start with the vertex form of the quadratic function.

$$
f(x)=a \cdot\left(x-x_{V}\right)^{2}+y_{V}
$$

The already known value $x_{V}=5$ will be insertet.

$$
f(x)=a \cdot(x-5)^{2}+y_{V}
$$

Now we can insert the parameters of the known points $L(0 \mid 1)$ and $F(8 \mid 7,4)$ into the functional equation.

$$
\begin{aligned}
L(0 \mid 1): & f(0)=1 \Rightarrow a \cdot(0-5)^{2}+y_{V}=1 \\
F(8 \mid 7,4): & f(8)=7,4 \Rightarrow a \cdot(8-5)^{2}+y_{V}=7,4
\end{aligned}
$$

Both equations - I name them equation (1) and (2) - will now be simplified.

$$
\begin{aligned}
& \text { (1) } a \cdot(0-5)^{2}+y_{V}=1 \\
& \begin{aligned}
\text { (2) } a \cdot(8-5)^{2}+y_{V} & =7,4 \\
\hline \text { (1) } a \cdot 5^{2}+y_{V} & =1
\end{aligned} \\
& \begin{array}{l}
\text { (2) } \quad a \cdot 3^{2}+y_{V}=7,4 \\
\hline(1) \\
25 a+y_{V}=1
\end{array} \\
& \text { (2) } \quad 9 a+y_{V}=7,4
\end{aligned}
$$

This system of equations can be solved with any desired method. As both equations have the same coefficient of c (it is 1), the method of subtraction ${ }^{8}$ should be beneficial. y_{V} immediately will disappear, if equation (2) is subtracted from equation (1), as in both equations its coefficient is equal.

$$
\begin{aligned}
\text { (1) } 25 a+y_{V} & =1 \\
\text { (2) } 9 a+y_{V} & =7,4 \\
\hline 16 a & =-6,4 \mid: 16 \\
a & =-0,4
\end{aligned}
$$

To get the value of y_{V} we insert this value $a=-0,4$ into equation (1) or (2). I have choosen equation (1).

$$
\begin{aligned}
25 a+y_{V} & =1 \\
25 \cdot(-0,4)+y_{V} & =1 \\
-10+y_{V} & =1 \\
y_{V} & =11
\end{aligned}
$$

[^7]Variant 2 of solution: Now we use the normal form to solve the problem.

$$
f(x)=a x^{2}+b x+c
$$

In this variant of solution we have do get not only two parameters (a and y_{V}), we need tree of them (a, b and c) to get the functional equation.

At first we can - similar to variant of solution 1 - insert the coordinates of the points $L(0 \mid 1)$ and $F(8 \mid 7,4)$ into the normal form.

$$
\begin{aligned}
L(0 \mid 1): & f(0)=1 \Rightarrow a \cdot 0^{2}+b \cdot 0+c=1 \\
F(8 \mid 7,4): & f(8)=7,4 \Rightarrow a \cdot 8^{2}+b \cdot 8+c=7,4
\end{aligned}
$$

Now we simplify both equations.

$$
\begin{aligned}
& \text { (1) } \begin{aligned}
0 a+0 b+c & =1 \\
\text { (2) } 64 a+8 b+c & =7,4
\end{aligned} \quad \Rightarrow \quad c=1
\end{aligned}
$$

We got immediately parameter $c=1$ out of equation (1). This value we can insert into equation (2). Afterwards we simplify the equation.
(2) $64 a+8 b+c=7,4$
(2) $64 a+8 b+1=7,4 \mid-1$
(2) $64 a+8 b=6,4$

We did not use the fact, that we know the x-value of the vertex with $x_{V}=5$. This value can be inserted into the vertex formula.

$$
\begin{aligned}
x_{V} & =-\frac{b}{2 a} \\
5 & =-\frac{b}{2 a}
\end{aligned}
$$

It is simple to rearrange this equation to b. We insert the result into the tranformed equation (2). This work is called method of insertion. ${ }^{9}$

$$
\begin{aligned}
5 & \left.=-\frac{b}{2 a} \right\rvert\, \cdot(-2 a) \\
-10 a & =b
\end{aligned}
$$

Insert into equation (2):

$$
\begin{aligned}
64 a+8 b & =6,4 \\
64 a+8 \cdot(-10 a) & =6,4 \\
64 a-80 a & =6,4 \\
-16 a & =6,4 \quad \mid:(-16) \\
a & =-0,4
\end{aligned}
$$

[^8]We insert this result into the tranformed vertex formula.

$$
\begin{aligned}
b & =-10 a \\
& =-10 \cdot(-0,4) \\
b & =4
\end{aligned}
$$

With this result we can write down the functional equation.

$$
f(x)=-0,4 x^{2}+4 x+1
$$

We insert the known value $x_{V}=5$ as x in the functional equation to get the y-value y_{V} of the vertex.

$$
\begin{aligned}
y_{V} & =f\left(x_{V}\right) \\
& =-0,4 x_{V}^{2}+4 x_{V}+1 \\
& =-0,4 \cdot 5^{2}+4 \cdot 5+1 \\
& =-10+20+1 \\
y_{V} & =11
\end{aligned}
$$

Comparing both methods of solution we probably notice, that the first variant of solution is a little bit shorter. In any case we get the result:

$$
\text { The water jet reaches a maximum height of } 11 \text { meter. }
$$

3.5 Example 5

A child is suddenly running in the street. A car driver, that drives with the allowed speed in built-up aereas of $50 \frac{\mathrm{~km}}{\mathrm{~h}}$, just in time can stop in front of the child. What would bee the speed by hitting the child, if he is "a little bit" too fast with a speed of $70 \frac{\mathrm{~km}}{\mathrm{~h}}$?

Solution: At first we need some basical principles. The way s, that a car moves in the time t while braking, is a quadratic function. Here it is:

$$
s(t)=-\frac{1}{2} \cdot a \cdot t^{2}+v_{0} \cdot t
$$

Attention! Parameter a in this formula is not identical with parameter a in the normal form of the quadratic function. In this context a is the value of the brake retardation and v_{0} is the start value of the speed of the car. The speed lowers as a linear function:

$$
v(t)=v_{0}-a \cdot t
$$

On the right you see the course of the way-time-function of the braking process. In the coordinate origin at the time $t=0$ the braking process is starting. The vehicle at first is movong forwards. The steep curve progression at the beginning on the left implifys a high speed. The curve progression changes more and more to flat, the speed decreases. At the vertex marked with C the vehicle stops. As the brake process is ending at this point, the definition aerea of the quadratic function ends here. If a force like
 the braking force would pull furthermore the car backwards, the car would be ascelerated backwards, as the dashed part of the function graph shows. As this does not happen, the graph ist plotted dashed.

Under normal conditions we can calculate with a brake retardation of appproximate $4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
To get a more comfortable calculation I want to omit the units. As all times should be given in seconds and all distances in meters, we have to use the unit "meters per second" for all speeds. It in not necessary to transform the units, when we remember: $1 \frac{\mathrm{~m}}{\mathrm{~s}}=3,6 \frac{\mathrm{~km}}{\mathrm{~h}}$ We only have to place the factor 3,6 into our formulas. We will get the following forms of the formulas. We begin with the way-time-function:

$$
s(t)=-\frac{1}{2} \cdot a \cdot t^{2}+\frac{v_{0}}{3,6} \cdot t
$$

And tis is the speed-time-function:

$$
\begin{aligned}
\frac{v(t)}{3,6} & \left.=\frac{v_{0}}{3,6}-a \cdot t \quad \right\rvert\, \cdot 3,6 \\
v(t) & =v_{0}-3,6 \cdot a \cdot t
\end{aligned}
$$

We remember: When we use this form of the formulas, we put s in meters, t in seconds, a in $\frac{\mathrm{m}}{\mathrm{s}^{2}}$ and v in $\frac{\mathrm{km}}{\mathrm{h}}$ into the formulas.

So we get this method of solution:

1. We calculate the time until the car stops for the maximum allowed speed by calculating the t_{S}-value (x_{S}-value) of the vertex with the use of the vertex formula.
2. By using this time as t-value (x-value) we can calculate the braking distance s_{S} $\left(y_{S}\right)$ with the way-time-function of the maximum allowed speed.
3. Now we take this braking distance s_{S} and the way-time-function of the fast speed to calculate the time t_{c} up to the crash.
4. By the use of this time in the speed-time-function we can calculate the speed, with that the car will hit the child.

At first we put the suggested value of the brake retardation with $4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ into the formulas and simplify them.

$$
\begin{aligned}
s(t) & =-\frac{1}{2} \cdot a \cdot t^{2}+\frac{v_{0}}{3,6} \cdot t \\
s(t) & =-\frac{1}{2} \cdot 4 \cdot t^{2}+\frac{v_{0}}{3,6} \cdot t \\
s(t) & =-2 \cdot t^{2}+\frac{v_{0}}{3,6} \cdot t \\
v(t) & =v_{0}-3,6 \cdot a \cdot t \\
v(t) & =v_{0}-3,6 \cdot 4 \cdot t \\
v(t) & =v_{0}-14,4 \cdot t
\end{aligned}
$$

Now we calculate the brake time with the allowed speed. This time is the t-value t_{S} of the vertex.

$$
\begin{aligned}
t_{S} & =-\frac{b}{2 a} \\
& =-\frac{\frac{50}{3,6}}{2 \cdot(-2)} \\
t_{S} & =3,472
\end{aligned}
$$

After a time of 3,472 seconds the car stops. We calculate the braking distance s_{S}.

$$
\begin{aligned}
s_{S} & =-2 \cdot t_{S}^{2}+\frac{v_{0}}{3,6} \cdot t_{S} \\
& =-2 \cdot(3,472)^{2}+\frac{50}{3,6} \cdot 3,472 \\
s_{S} & =24,11
\end{aligned}
$$

When driving with the allowed speed of $50 \frac{\mathrm{~km}}{\mathrm{~h}}$ the braking distance is $24,11 \mathrm{~m}$.

Now we calculate the time while breaking at the initial speed of $70 \frac{\mathrm{~km}}{\mathrm{~h}}$, until the car covers the distance of $24,11 \mathrm{~m}$. The quadratic equation, that occures during solution, we can solve with the $p-q$-formula ${ }^{10}$.

$$
\begin{array}{rlrl}
s & =-2 \cdot t^{2}+\frac{v_{0}}{36} \cdot t & & \\
24,11 & =-2 \cdot t^{2}+\frac{70}{3,6} \cdot t & & \left\lvert\,+2 \cdot t^{2}-\frac{70}{3,6}\right. \\
2 \cdot t^{2}-\frac{70}{3,6} \cdot t+24,11 & =0 & & \mid: 2 \\
t^{2}-9,72 \cdot t+12,055 & =0 & & \\
t_{1 / 2} & =-\frac{-9,72}{2} \pm \sqrt{\left(\frac{-9,72}{2}\right)^{2}-12,055} & \\
t_{1 / 2} & =4,86 \pm 3,40 & & \\
t_{1}=1,46 & & t_{2}=8,26 &
\end{array}
$$

Now probably the question appears, why we have got two solutions. The reason is as following:

As in the previous text already described, the meaning of "braking" is a force, that pulls on the car backwards. Hereby the car slows down, until it stops. If now still a force would work pulling from behind, the car would be ascelerated backwards and would cross some time later the milestone at $24,11 \mathrm{~m}$. Therefore the formula looses its validity at the point of stopping, all greater times are beyond the validity of the formula. Therefore we have to calculate with the smaller time $t_{1}=1,46 \mathrm{~s}$.

$$
\begin{aligned}
v & =v_{0}-14,4 \cdot t \\
& =70-14,4 \cdot 1,46 \\
v & =48,98
\end{aligned}
$$

The child would be hit with a speed of $48,98 \frac{\mathrm{~km}}{\mathrm{~h}}$. This is rounabout the allowed speed. So a "little bit" faster has very severe consequences for the child.

Appendix: What would have happened, if we had calculated with the greater time $t_{2}=8,26 \mathrm{~s}$? We just try it out.

$$
\begin{aligned}
v & =v_{0}-14,4 \cdot t \\
& =70-14,4 \cdot 8,26 \\
v & =-48,94
\end{aligned}
$$

The result is (apart from rounding errors) almost the same as calculating with the smaller time, only the algebraic sign is negative. With this speed the car would cross backwards the milestone at $24,11 \mathrm{~m}$, if the backwards directed braking force would still work after the stop. But we know, it does not work afterwards.

[^9]
4 Exercises

4.1 Exercise 1:

Specify a quadratic function $f(x)$ with the shape factor 1 and a vertex $S(4 \mid-7)$!

4.2 Exercise 2:

You have got the function $f_{1}(x)=2 x^{2}-4 x+3$. Specify the function $f_{2}(x)$, that is shifted comparing to $f_{1}(x) 3$ units to the right and 2 units downwards!

4.3 Exercise 3:

The quadratic function $f(x)$ has the vertex $V(4 \mid 1)$. The functional graph hits the y-axis at $y_{0}=-7$. Calculate the functional equation $f(x)$.

4.4 Exercise 4:

Calculate the vertex, the zeros and the range of values of the quadratic function:

$$
f(x)=3 x^{2}-12 x+15
$$

4.5 Exercise 5:

Find out the vertex, the zeros and the range of values of the quadratic function:

$$
f(x)=-16 x^{2}-16 x+5
$$

4.6 Exercise 6:

Find out the crossing points of the parabula of the function $f_{1}(x)=4 x^{2}-9 x+1$ with the straight line of the function $f_{2}(x)=3 x+17$!

4.7 Exercise 7:

Find out the crossing points of the parabula of the function $f_{1}(x)=9 x^{2}+12 x-4$ with the straight line of the function $f_{2}(x)=-12 x+5$!

4.8 Exercise 8:

You have the quadratic function $f(x)=-2 x^{2}+5 x-3$. Specify the vertex and find out inverse function $f^{-1}(x)$. What is the the definition range of this inverse function?

4.9 Exercise 9:

Find out the crossing points between the parabulas with the functional equations $f_{1}(x)=$ $4 x^{2}+3 x-8$ and $f_{2}(x)=7 x^{2}+9 x+7$.

4.10 Exercise 10:

Find out the functional equation of the parabula, that crosses these points: $P_{1}(-1 \mid 8)$, $P_{2}(2 \mid-1)$ und $P_{3}(4 \mid 3)$

4.11 Exercise 11:

Find out the functional equation of the linear function $f_{1}(x)$, whose straight line touches the parabula with the functional equation $f_{1}(x)=x^{2}-4 x+4$ at $x_{b}=4$ as a tangent.

4.12 Exercise 12:

A parabula has the vertex $V(3 \mid 2)$ and runs through the point $P(5 \mid 10)$. Find out its funktional equation $f(x)$!

4.13 Exercise 13:

Calculate the zeros and the vertex of the quadratic function (as far they exist):

$$
f(x)=-16 x^{2}+24 x-25
$$

4.14 Exercise 14:

The quadratic function $f(x)$ has the vertex $S(4 \mid 3)$ and runs through the point $P(6 \mid 11)$. Find out the functional equation of $f(c)$!

4.15 Exercise 15:

Find out the functional equation of the parabula, that crosses these points: $P_{1}(-3 \mid 32)$, $P_{2}(-1 \mid 10)$ and $P_{3}(2 \mid 7)$

4.16 Exercise 16:

A shifted normal parabula (factor of shape $a=1$) runs through the points $P_{1}(-1 \mid-2)$ und $P_{2}(0 \mid 1)$. What is the associated functional equation $f(x)$?

4.17 Exercise 17:

Find out the functional equation of the parabula, that crosses these points: $P_{1}(0 \mid 8)$, $P_{2}(1 \mid 3)$ and $P_{3}(2 \mid 0)$

4.18 Exercise 18:

A parabula (quadratic function) has the vertex $S(-2 \mid 0)$ and runs through the point $P(-1 \mid-2)$. Specify the functional equation $f(x)$!

4.19 Exercise 19:

Take the parabula of the function $f_{1}(x)=\frac{1}{2}(x-4)^{2}-1$ and shift her so far upwards, that she will hit the point $P(2 \mid 3)$. What ist the functional equation $f_{2}(x)$ of the new function?

4.20 Exercise 20:

You should shift the parabula of the quadratic equation $f_{1}(x)=\frac{1}{2} x^{2}-4 x+7$ so far to the left, that the new parabula hits the point $P\left(0 \left\lvert\, \frac{7}{2}\right.\right)$. Specify the corresponding functional equation $f_{2}(x)$. Show all possible solutions!

4.21 Exercise 21:

How has the parabula with the functional equation $f_{1}(x)=\frac{1}{2} x^{2}-4 x+7$ to be changed, that the point $P(3 \mid-6)$ belongs to the new parabula? The new parabula should have the same vertex als the old one. Secify the functional equation $f_{2}(x)$ of the new parabula!

4.22 Exercise 22:

The parabula of the quadratic function $f_{1}(x)$ crosses the straight line of the function $f_{2}(x)=x-2$ at $x_{1}=-4$ and $x_{2}=1$. The parabula crosses the y-axis at $y_{0}=2$. Specify the functional equation $f_{1}(x)$!

4.23 Exercise 23:

Calculate the crossing points - if they exist - of the two parabulas with the functional equations $f_{1}(x)=x^{2}-2 x+3$ and $f_{2}(x)=2 x^{2}-8 x+12$.

4.24 Exercise 24:

A parabula with the shape factor $a=2$ runs through the points $P_{1}(1 \mid-1)$ and $P_{2}(2 \mid 1)$. Specify the functional equation $f(x)$!

4.25 Exercise 25:

A parabula crosses the points $P_{1}(2 \mid 7)$ und $P_{2}(3 \mid 6)$ and cuts the y-axis at $y_{0}=3$. Find out the functional equation $f(x)$!

4.26 Exercise 26:

Shift the parabula with the functional equation $f_{1}(x)=3 x^{2}-4$ in a way, that the new parabula crosses the points $P_{1}(3 \mid 2)$ und $P_{2}(6 \mid-7)$. Specify the functional equation $f_{2}(x)$, that occured by this shifting.

4.27 Exercise 27:

A quadratic function has the shape factor $a=-1$ and the vertex $V(2 \mid 3)$. Specify the functional equation $f(x)$ in vertex form and in normal form!

4.28 Exercise 28:

The functional graph of a quadratic function has the vertex $V(3 \mid-1)$ and runs through the point $P(1 \mid 7)$. Specify the functional equation $f(x)$ in vertex form and in normal form!

4.29 Exercise 29:

We have a quadratic function with the functional equation $f(x)=-2 x^{2}-4 x+6$. Calculate the vertex and the zeros!

4.30 Exercise 30:

A parabula with the vertex $V(4 \mid 7)$ crosses the y-axis at $y_{0}=4$. Specify the associated functional equation!

4.31 Exercise 31:

We have a quadratic function with the functional equation:

$$
f_{1}(x)=3 x^{2}+24 x+53
$$

We are looking for the function f_{2} with the same vertex as f_{1}. The related parabula of f_{2} should cross the point $P(-2 \mid-3)$.

4.32 Exercise 32:

A parabula crosses the points $P_{1}(0 \mid 14)$ and $P_{2}(2 \mid-2)$. The vertex can be found at $x_{V}=3$. Specify the related functional equation $f(x)$!

4.33 Exercise 33:

Which of these five functions have the same vertex?

$$
\begin{aligned}
f_{1}(x) & =x^{2}-10 x+21 \\
f_{2}(x) & =3 x^{2}-30 x+71 \\
f_{3}(x) & =-2 x^{2}+20 x-48 \\
f_{4}(x) & =0,5 x^{2}+5 x+8,5 \\
f_{5}(x) & =4 \cdot(x-5)^{2}-4
\end{aligned}
$$

4.34 Exercise 34:

We have given the function f_{1} with the functional equation

$$
f_{1}(x)=4 x^{2}-24 x+37
$$

We want to find out the functional equation f_{2} of a parabula, that is produced by turning the parabula of f_{1} with an angle of 180° around the vertex, as shown in the graphic on the right side.

4.35 Exercise 35:

Find out the crossing points of the parabula with $f_{1}(x)=10 x^{2}+12 x-4$ and the stright line with $f_{2}(x)=9 x-3$.

5 Solutions

5.1 Exercise 1:

Specify a quadratic function $f(x)$ with the shape factor 1 and a vertex $S(4 \mid-7)$!

Solution: It is appropriate to use the vertex formula.

$$
f(x)=a \cdot\left(x-x_{V}\right)^{2}+y_{V}
$$

Now we can insert the known coordinates of the vertex and the also known shape factor, and we are already completed.

$$
f(x)=1 \cdot(x-4)^{2}-7
$$

If you want, you can dissolve the brackets, to transform the functional equation into the normal form.

$$
\begin{aligned}
f(x) & =1 \cdot(x-4)^{2}-7 \\
& =x^{2}-8 x+16-7 \\
f(x) & =x^{2}-8 x+9
\end{aligned}
$$

Subsequent you see the associated functional graph.

5.2 Exercise 2:

You have got the function $f_{1}(x)=2 x^{2}-4 x+3$. Specify the function $f_{2}(x)$, that is shifted comparing to $f_{1}(x) 3$ units to the right and 2 units downwards!

Solution: To solve this problem it is appropriate to use the formula of shifted function. 2 units downwards correspond to -2 units upwards.

$$
\begin{aligned}
f_{2}(x) & =f_{1}\left(x-x_{s}\right)+y_{s} \\
& =f_{1}(x-3)+(-2) \\
& =2 \cdot(x-3)^{2}-4 \cdot(x-3)+3-2 \\
& =2 \cdot\left(x^{2}-6 x+9\right)-4 x+12+1 \\
& =2 x^{2}-12 x+18-4 x+13 \\
f_{2}(x) & =2 x^{2}-16 x+31
\end{aligned}
$$

Subsequent you see the associated functional graph.

5.3 Exercise 3:

The quadratic function $f(x)$ has the vertex $V(4 \mid 1)$. The functional graph hits the y-axis at $y_{0}=-7$. Calculate the functional equation $f(x)$.

Solution: As we know the vertex, it is appropriate, to use the vertex form. We only have to calculate then the shape factor a.

$$
\begin{aligned}
& f(x)=a \cdot\left(x-x_{V}\right)^{2}+y_{V} \\
& f(x)=a \cdot(x-4)^{2}+1
\end{aligned}
$$

The crossing point with the y-axis means: $f(0)=y_{S}$. We insert this into the equation.

$$
\begin{array}{rlr}
-7 & =a \cdot(0-4)^{2}+1 & \\
-7 & =a \cdot 16+1 & \mid-1 \\
-8 & =16 a & \mid: 16 \\
a & =-\frac{8}{16} & \\
a & =-\frac{1}{2} &
\end{array}
$$

By using this value for a we get the wanted functional equation:

$$
f(x)=-\frac{1}{2} \cdot(x-4)^{2}+1=-\frac{1}{2} \cdot\left(x^{2}-8 x+16\right)+1=-\frac{1}{2} x^{2}+4 x-7
$$

Here we see the course of the functional graph.

5.4 Exercise 4:

Calculate the vertex, the zeros and the range of values of the quadratic function:

$$
f(x)=3 x^{2}-12 x+15
$$

Solution: At a zero the value of the function is 0 . Therefore the beginning of a calculation of zeros is: $f\left(x_{0}\right)=0$.

$$
\begin{aligned}
3 x_{0}^{2}-12 x_{0}+15 & =0 \\
x_{0}^{2}-4 x_{0}+5 & =0 \\
x_{01 / 2} & =2 \pm \sqrt{4-5} \\
x_{01 / 2} & =2 \pm \sqrt{-1}
\end{aligned}
$$

As there is no real solution for the sqare root, we have no zeros. On the other hand we can read the x-value of the vertex in this formula. It is always the value before \pm and the root, here $x_{V}=2$. We get the corresponding y-value y_{V} by inserting the value of x_{V} into the functional equation.

$$
\begin{aligned}
y_{V} & =f\left(x_{V}\right) \\
& =3 \cdot 2^{2}-12 \cdot 2+15 \Rightarrow V(2 \mid 3) \\
y_{V} & =3 \quad \Rightarrow \quad
\end{aligned}
$$

As the shape factor with the value $a=3$ is positive, the parabula is opened upwards. Therefore we get the range of values:

$$
W=\{y \mid y \geq 3\}
$$

Here we see the course of the functional graph.

5.5 Exercise 5:

Find out the vertex, the zeros and the range of values of the quadratic function:

$$
f(x)=-16 x^{2}-16 x+5
$$

Solution: At a zero the value of the function is 0 . Therefore the beginning of a calculation of zeros is: $f\left(x_{0}\right)=0$.

$$
\begin{aligned}
-16 x_{0}^{2}-16 x_{0}+5 & =0 \\
x_{0}^{2}+x_{0}-\frac{5}{16} & =0 \\
x_{01 / 2} & =-\frac{1}{2} \pm \sqrt{\frac{1}{4}+\frac{5}{16}} \\
x_{01 / 2} & =-\frac{1}{2} \pm \sqrt{\frac{4}{16}+\frac{5}{16}} \\
x_{01 / 2} & =-\frac{1}{2} \pm \sqrt{\frac{9}{16}} \\
x_{01 / 2} & =-\frac{1}{2} \pm \frac{3}{4} \\
x_{01 / 2} & =-\frac{2}{4} \pm \frac{3}{4} \\
x_{01} & =\frac{1}{4} \\
x_{02} & =-\frac{5}{4}
\end{aligned}
$$

As we did it at exercise 4 we can read from this formula the x-value of the vertex as the value in front of the root. That is:

$$
x_{V}=-\frac{1}{2}
$$

We get the corresponding y-value y_{V} by inserting x_{V} into the functional equation:

$$
y_{V}=f\left(x_{V}\right)=-16 \cdot\left(-\frac{1}{2}\right)^{2}-16 \cdot\left(-\frac{1}{2}\right)+5=9
$$

Hereby we got the vertex:

$$
V\left(\left.-\frac{1}{2} \right\rvert\, 9\right)
$$

As the shape factor $a=-16$ is negative, the parabula is opened downwards. The range of values therefore is below the vertex:

$$
W=\{x \mid x \leq 9\}
$$

Here we see the course of the functional graph.

5.6 Exercise 6:

Find out the crossing points of the parabula of the function $f_{1}(x)=4 x^{2}-9 x+1$ with the straight line of the function $f_{2}(x)=3 x+17$!

Solution: The crossing points are exact those points of both curves, where the x - and the y-values are identic. Therefore we can equate both functional terms to get them.

$$
\begin{array}{rlrl}
f_{1}\left(x_{S}\right) & =f_{2}\left(x_{S}\right) & \\
4 x_{S}^{2}-9 x_{S}+1 & =3 x_{S}+17 & \mid-3 x_{S}-17 \\
4 x_{S}^{2}-12 x_{S}-16 & =0 & \mid: 4 \\
x_{S}^{2}-3 x_{S}-4 & =0 & & \\
x_{S 1 / 2} & =\frac{3}{2} \pm \sqrt{\frac{9}{4}+\frac{16}{4}} & \\
& =\frac{3}{2} \pm \sqrt{\frac{25}{4}} & \\
& =\frac{3}{2} \pm \frac{5}{2} \\
x_{S 1} & =\frac{3}{2}+\frac{5}{2}=4 & \\
x_{S 2} & =\frac{3}{2}-\frac{5}{2}=-1 &
\end{array}
$$

We get the corresponding y-values by inserting the x-values in any desired functional equation. I chose f_{2} for that purpuse, it looks a bit simpler.

$$
\begin{aligned}
y_{S} & =f_{2}\left(x_{S}\right) \\
y_{S 1} & =3 x_{S 1}+17=3 \cdot 4+17=29 \\
y_{S 2} & =3 x_{S 2}+17=3 \cdot(-1)+17=14
\end{aligned}
$$

We have got the crossing points:

$$
S_{1}(4 \mid 29) \quad \text { and } \quad S_{2}(-1 \mid 14)
$$

Here we see the courses of the functional graphs.

5.7 Exercise 7:

Find out the crossing points of the parabula of the function $f_{1}(x)=9 x^{2}+12 x-4$ with the straight line of the function $f_{2}(x)=-12 x+5$!

Solution: The crossing points are exact those points of both curves, where the x - and the y-values are identic. Therefore we can equate both functional terms to get them.

$$
\begin{array}{rlrl}
f_{1}\left(x_{S}\right) & =f_{2}\left(x_{S}\right) & & \\
9 x_{S}^{2}+12 x_{S}-4 & =-12 x_{S}+5 & & \mid+12 x_{S}-5 \\
9 x_{S}^{2}+24 x_{S}-9 & =0 & & \mid: 9 \\
x_{S}^{2}+\frac{8}{3} x_{S}-1 & =0 & & \\
x_{S 1 / 2} & =-\frac{4}{3} \pm \sqrt{\frac{16}{9}}+\frac{9}{9} & \\
& =-\frac{4}{3} \pm \sqrt{\frac{25}{9}} & \\
& =-\frac{4}{3} \pm \frac{5}{3} \\
x_{S 1} & =-\frac{4}{3}-\frac{5}{3}=-3 & \\
x_{S 2} & =-\frac{4}{3}+\frac{5}{3}=\frac{1}{3}
\end{array}
$$

We get the corresponding y-values by inserting the x-values in any desired functional equation. I chose f_{2} for that purpuse, it looks a bit simpler.

$$
\begin{aligned}
y_{S} & =f_{2}\left(x_{S}\right) \\
y_{S 1} & =-12 x_{S 1}+5=-12 \cdot(-3)+5=41 \\
y_{S 2} & =-12 x_{S 2}+5=-12 \cdot \frac{1}{3}+5=1
\end{aligned}
$$

We have got the crossing points:

$$
S_{1}(-3 \mid 41) \quad \text { and } \quad S_{2}\left(\left.\frac{1}{3} \right\rvert\, 1\right)
$$

Here we see the courses of the functional graphs.

5.8 Exercise 8:

You have the quadratic function $f(x)=-2 x^{2}+5 x-3$. Specify the vertex and find out inverse function $f^{-1}(x)$. What is the the definition range of this inverse function?

Solution: We get the vertex easy by using the vertex formula.

$$
\begin{gathered}
x_{S}=-\frac{b}{2 a}=-\frac{5}{2 \cdot(-2)}=\frac{5}{4} \\
y_{S}=f\left(x_{S}\right)=-2 x_{S}^{2}+5 x_{S}-3=-2\left(\frac{5}{4}\right)^{2}+5 \cdot \frac{5}{4}-3=\frac{1}{8} \\
S\left(\left.\frac{5}{4} \right\rvert\, \frac{1}{8}\right)
\end{gathered}
$$

To get the inverse function $f^{-1}(x)$ we jut have to change the positions of x and y. Afterwards we dissolve the equation to y.

$$
\begin{array}{rlrl}
y & =-2 x^{2}+5 x-3 & & \mid \text { change } x \text { and } y \\
x & =-2 y^{2}+5 y-3 & & \mid+2 y^{2}-5 y+3 \\
2 y^{2}-5 y+3+x & =0 & & \mid: 2 \\
y^{2}-\frac{5}{2} y+\frac{3}{2}+\frac{x}{2} & =0 & & \\
y_{1 / 2} & =\frac{5}{4} \pm \sqrt{\frac{25}{16}-\frac{24}{16}}-\frac{8 x}{16} & & \\
& =\frac{5}{4} \pm \sqrt{\frac{1-8 x}{16}} & & \\
& =\frac{5}{4} \pm \frac{\sqrt{1-8 x}}{4} & & \\
f^{-1}(x)= & \frac{5}{4} \pm \frac{1}{4} \sqrt{1-8 x} \\
1-8 x \geq 0 & \mid-1 \\
& -8 x \geq-1 \mid:(-8) \\
& x \leq \frac{1}{8} & & \\
& D=\left\{x \left\lvert\, x \leq \frac{1}{8}\right.\right\} &
\end{array}
$$

Here we see the courses of the functional graphs.

5.9 Exercise 9:

Find out the crossing points between the parabulas with the functional equations $f_{1}(x)=$ $4 x^{2}+3 x-8$ and $f_{2}(x)=7 x^{2}+9 x+7$.

Solution: The crossing points are exact those points of both curves, where the x - and the y-values are identic. Therefore we can equate both functional terms to get them.

$$
\begin{array}{rlrl}
4 x_{S}^{2}+3 x_{S}-8 & =7 x_{S}^{2}+9 x_{S}+7 & \mid-7 x_{S}^{2}-9 x_{S}-7 \\
-3 x_{S}^{2}-6 x_{S}-15 & =0 & & \mid:(-3) \\
x_{S}^{2}+2 x_{S}+5 & =0 & & \\
x_{S 1 / 2} & =-1 \pm \sqrt{1-5} & & \\
x_{S 1 / 2} & =-1 \pm \sqrt{-4} & &
\end{array}
$$

As there is no real solution for the root, we have no crossing points.
You see the course of the funktions underneath.

5.10 Exercise 10:

Find out the functional equation of the parabula, that crosses these points: $P_{1}(-1 \mid 8)$, $P_{2}(2 \mid-1)$ und $P_{3}(4 \mid 3)$

Solution: To solve the problem we start with the normal form of the quadratic function. When we insert in each case the coordinates of all known points, we get three equations als a system of linear equations. With this we can figure out the parameters a, b and c. The normal form is:

$$
f(x)=a x^{2}+b x+c
$$

We insert the coordinates of the three points.

$$
\begin{aligned}
P_{1}(-1 \mid 8) & \Rightarrow f(-1) & =8 & \Rightarrow & a \cdot(-1)^{2}+b \cdot(-1)+c & =8 \\
P_{2}(2 \mid-1) & \Rightarrow & f(2) & =-1 & \Rightarrow & a \cdot 2^{2}+b \cdot 2+c
\end{aligned}=-1
$$

On the right side we got the system of linear equations. We simplify it a little bit:
(1) $a-b+c=8$
(2) $4 a+2 b+c=-1$
(3) $16 a+4 b+c=3$

This system of linear equations can be solved with any known methods, for example the method of insertion, the method of addition, the rule of Cramer or the method of Gauß and Jordan. I prefer the rule of Cramer ${ }^{11}$. I start to calculate a :

$$
a=\frac{\left|\begin{array}{rrr}
8 & -1 & 1 \\
-1 & 2 & 1 \\
3 & 4 & 1
\end{array}\right|}{\left|\begin{array}{rrr}
1 & -1 & 1 \\
4 & 2 & 1 \\
16 & 4 & 1
\end{array}\right|}=\frac{16-3-4-6-32-1}{2-16+16-32-4+4}=\frac{-30}{-30}=1
$$

With the now known value of the determinant in the denominator we quickly get b :

$$
b=\frac{\left|\begin{array}{rrr}
1 & 8 & 1 \\
4 & -1 & 1 \\
16 & 3 & 1
\end{array}\right|}{-30}=\frac{-1+128+12+16-3-32}{-30}=\frac{120}{-30}=-4
$$

The easyest way to get c is insertion of the known values a and b into any equation. I take equation (1).

$$
\begin{aligned}
a-b+c & =8 \\
1-(-4)+c & =8 \\
5+c & =8 \\
c & =3
\end{aligned}
$$

Inserting the calculates values into the normal form we get the wanted equation.

$$
f(x)=x^{2}-4 x+3
$$

[^10]You see the course of the funktion underneath.

5.11 Exercise 11:

Find out the functional equation of the linear function $f_{1}(x)$, whose straight line touches the parabula with the functional equation $f_{1}(x)=x^{2}-4 x+4$ at $x_{b}=4$ as a tangent.

Solution: Let us start with the normal form of the linear function. It looks li'ke this:

$$
f_{2}(x)=m x+b
$$

The concept of solving the problem is as follows: A straight line touches a parabula, if and only if there ist only one common point. This is the touching point, not two crossing points.

We can start in the same way like looking for crossing points. The x-value of the " crossing point" is called x_{t} then.

$$
\begin{array}{rlrlrl}
f_{1}\left(x_{t}\right) & =f_{2}\left(x_{t}\right) & & & \mid-m \cdot x_{t}-b \\
x_{t}^{2}-4 x_{t}+4 & =m \cdot x_{t}+b & & \mid p-q \text {-formula } \\
x_{t}^{2}-4 x_{t}-m \cdot x_{t}+4-b & =0 & & \\
x_{t}^{2}-(4+m) \cdot x_{t}+4-b & =0 & & \\
x_{t 1 / 2} & =\frac{4+m}{2} \pm \sqrt{\left(\frac{4+m}{2}\right)^{2}-4+b} &
\end{array}
$$

As told before we have a touching point, when we get only one common point. For this effect the root must have the value zero. In this case we get:

$$
x_{B}=\frac{4+m}{2}
$$

As we already know the value $x_{B}=4$, we can calculate m by this.

$$
\begin{aligned}
x_{B} & =\frac{4+m}{2} \\
4 & \left.=\frac{4+m}{2} \right\rvert\, \cdot 2 \\
8 & =4+m \quad \mid-4 \\
4 & =m
\end{aligned}
$$

We know, the content of the root is zero. Hereby we get an equation to work out b.

$$
\begin{aligned}
\left(\frac{4+m}{2}\right)^{2}-4+b & =0 \\
\left(\frac{4+4}{2}\right)^{2}-4+b & =0 \\
16-4+b & =0 \\
12+b & =0 \\
b & =-12
\end{aligned}
$$

We have got the wanted functional equation: $f_{2}(x)=4 x-12$
Here we see the courses of the functional graphs.

5.12 Exercise 12:

A parabula has the vertex $V(3 \mid 2)$ and runs through the point $P(5 \mid 10)$. Find out its funktional equation $f(x)$!

Solution: As we know the vertex, it is appropriate, to use the vertex form. We only have to calculate then the shape factor a.

$$
\begin{aligned}
& f(x)=a \cdot\left(x-x_{V}\right)^{2}+y_{V} \\
& f(x)=a \cdot(x-3)^{2}+2
\end{aligned}
$$

Furthermore we know the coordinates of the point P. They must comply the functional equation.

$$
\begin{aligned}
f\left(x_{p}\right) & =y_{p} \\
a \cdot\left(x_{p}-3\right)^{2}+2 & =y_{p} \\
a \cdot(5-3)^{2}+2 & =10 \\
a \cdot 2^{2}+2 & =10 \quad \mid-2 \\
a \cdot 4 & =8 \quad \mid: 4 \\
a & =2
\end{aligned}
$$

I insert this value as a and I get the wanted functional equation.

$$
\begin{aligned}
f(x) & =2 \cdot(x-3)^{2}+2 \\
& =2 \cdot\left(x^{2}-6 x+9\right)+2 \\
& =2 x^{2}-12 x+18+2 \\
f(x) & =2 x^{2}-12 x+20
\end{aligned}
$$

Here we see the course of the functional graph.

5.13 Exercise 13:

Calculate the zeros and the vertex of the quadratic function (as far they exist):

$$
f(x)=-16 x^{2}+24 x-25
$$

Solution: At a zero the value of the function is zero. That leads us to the base of solving the problem: $f\left(x_{0}\right)=0$.

$$
\begin{aligned}
-16 x_{0}^{2}+24 x_{0}-25 & =0 \\
x_{0}^{2}-\frac{3}{2} x_{0}+\frac{25}{16} & =0 \\
x_{01 / 02} & =\frac{3}{4} \pm \sqrt{\frac{9}{16}-\frac{25}{16}} \\
x_{01 / 02} & =\frac{3}{4} \pm \sqrt{-1}
\end{aligned}
$$

As there is no real solution for the root we have no zeros. On the other hand we can read out from this formula the x-value x_{V} of the vertex. It is always the value, we find in front of \pm and the root. That is $x_{V}=\frac{3}{4}$. The corresponding y-value y_{V} we get by inserting x_{V} into the functional equation.

$$
\begin{aligned}
y_{V} & =f\left(x_{V}\right) \\
& =-16 x_{S}^{2}+24 x_{S}-25 \\
& =-16 \cdot\left(\frac{3}{4}\right)^{2}+24 \cdot \frac{3}{4}-25 \\
& =-9+18-25 \\
y_{V} & =16
\end{aligned}
$$

Result:
vertex $V\left(\left.\frac{3}{4} \right\rvert\, 16\right)$

5.14 Exercise 14:

The quadratic function $f(x)$ has the vertex $S(4 \mid 3)$ and runs through the point $P(6 \mid 11)$.
Find out the functional equation of $f(c)$!
Solution: It is appropriate to use the vertex formula of the quadratic function.

$$
\begin{aligned}
& f(x)=a \cdot\left(x-x_{S}\right)^{2}+y_{S} \\
& f(x)=a \cdot(x-4)^{2}+3
\end{aligned}
$$

To get the value of the missing parameter a we insert the coordinates of the point P into this equation.

$$
\begin{aligned}
f\left(x_{P}\right) & =y_{P} \\
f(6) & =11 \\
a \cdot(6-4)^{2}+3 & =11 \\
a \cdot 4+3 & =11 \mid-3 \\
4 a & =8 \\
a & =2
\end{aligned}
$$

If you want, yo can transform the vertex form into the normal form.

$$
\begin{aligned}
f(x) & =2 \cdot(x-4)^{2}+3 \\
& =2 \cdot\left(x^{2}-8 x+16\right)+3 \\
& =2 x^{2}-16 x+32+3 \\
f(x) & =2 x^{2}-16 x+35
\end{aligned}
$$

The wanted function is:

$$
f(x)=2 \cdot(x-4)^{2}+3 \quad \text { or } \quad f(x)=2 x^{2}-16 x+35
$$

5.15 Exercise 15:

Find out the functional equation of the parabula, that crosses these points: $P_{1}(-3 \mid 32)$, $P_{2}(-1 \mid 10)$ and $P_{3}(2 \mid 7)$

Solution: We start with the normal form $f(x)=a x^{2}+b x+c$ and insert the coordinates of all points.
(1) $f(-3)=32 \Rightarrow a \cdot(-3)^{2}+b \cdot(-3)+c=32$
(2) $f(-1)=10 \Rightarrow a \cdot(-1)^{2}+b \cdot(-1)+c=10$
(3) $f(2)=7 \Rightarrow a \cdot 2^{2}+b \cdot 2+c=7$

On the right side we have got the system of linear equations. We simplify it a little bit:

$$
\begin{aligned}
\text { (1) } 9 a-3 b+c & =32 \\
\text { (2) } a-b+c & =10 \\
\text { (3) } 4 a+2 b+c & =7
\end{aligned}
$$

This system of linear equations can be solved with any known methods, for example the method of insertion, the method of addition, the rule of Cramer or the method of Gauß and Jordan. I prefer the rule of Cramer. I start to calculate a :

$$
a=\frac{\left|\begin{array}{rrr}
32 & -3 & 1 \\
10 & -1 & 1 \\
7 & 2 & 1
\end{array}\right|}{\left|\begin{array}{rrr}
9 & -3 & 1 \\
1 & -1 & 1 \\
4 & 2 & 1
\end{array}\right|}=\frac{-32-21+20+7-64+30}{-9-12+2+4-18+3}=\frac{-60}{-30}=2
$$

With the now known value of the determinant in the denominator we quickly get b :

$$
b=\frac{\left|\begin{array}{rrr}
9 & 32 & 1 \\
1 & 10 & 1 \\
4 & 7 & 1
\end{array}\right|}{-30}=\frac{90+128+7-40-63-32}{-30}=\frac{90}{-30}=-3
$$

The easyest way to get c is insertion of the known values a and b into any equation. I take equation (2).

$$
\begin{aligned}
a-b+c & =10 \\
2+3+c & =10 \quad \mid-5 \\
c & =5
\end{aligned}
$$

We get the wanted function: $f(x)=2 x^{2}-3 x+5$

5.16 Exercise 16:

A shifted normal parabula (factor of shape $a=1$) runs through the points $P_{1}(-1 \mid-2)$ und $P_{2}(0 \mid 1)$. What is the associated functional equation $f(x)$?

Solution: By using the known shape factor $a=1$ we get the normal form:

$$
f(x)=x^{2}+b x+c
$$

The coordinates of the known points are inserted.
$\begin{aligned} \text { (1) } & f(-1) & =-2 & \Rightarrow & (-1)^{2}+b \cdot(-1)+c & =-2 \\ \text { (2) } & f(0) & =1 & \Rightarrow & 0^{2}+b \cdot 0+c & =1\end{aligned}$
From equation (2) we directly get:

$$
c=1
$$

We insert this value into equation (1).

$$
\begin{aligned}
(-1)^{2}+b \cdot(-1)+1 & =-2 \\
1-b+1 & =-2 \mid-2 \\
-b & =-4 \mid \cdot(-1) \\
b & =4
\end{aligned}
$$

So we have got the wanted functional equation: $f(x)=x^{2}+4 x+1$

5.17 Exercise 17:

Find out the functional equation of the parabula, that crosses these points: $P_{1}(0 \mid 8)$, $P_{2}(1 \mid 3)$ and $P_{3}(2 \mid 0)$

Solution: We start with the normal form $f(x)=a x^{2}+b x+c$ and insert the coordinates of all points.

$$
\begin{aligned}
& \text { (1) } f(0)=8 \Rightarrow a \cdot 0^{2}+b \cdot 0+c=8 \\
& \text { (2) } f(1)=3 \Rightarrow a \cdot 1^{2}+b \cdot 1+c=3 \\
& \text { (3) } f(2)=0 \Rightarrow a \cdot 2^{2}+b \cdot 2+c=0
\end{aligned}
$$

On the right side we have got the system of linear equations. We simplify it a little bit:

$$
\begin{aligned}
\text { (1) } & =8 \\
\text { (2) } & a+b+c
\end{aligned}=3 \begin{aligned}
& \text { (3) } \\
& \text { (3) }+2 b+c
\end{aligned}=0
$$

$c=8$ bekannt ist. Dieser Wert wird vorab in (2) und (3) eingesetzt, die Gleichungen werden vereinfacht. This system of linear equations can be solved with any known methods. You should notice, that equation (1) directly tells us the value $c=8$. We insert this value into equations (2) and (3). The generated equations will be simplified a bit.

$$
\begin{aligned}
& \text { (2) } a+b+8=3 \quad \mid-8 \\
& \begin{aligned}
\text { (2) } & =-5 \\
\hline \text { (3) } 4 a+2 b+8 & =0 \quad \mid-8
\end{aligned} \\
& \text { (3) } 4 a+2 b=-8
\end{aligned}
$$

In sum we get a system of linear equations of $2^{\text {nd }}$ order.

$$
\begin{aligned}
& \text { (2) } a=-5 \\
& \text { (3) } 4 a+2 b=-8 \\
& \hline
\end{aligned}
$$

Equation (2) easily can be equated to a or b, to use the method of insertion ${ }^{12}$. I equate to a.

$$
\begin{aligned}
a+b & =-5 \quad \mid-b \\
a & =-5-b
\end{aligned}
$$

Insert into (3):

$$
\begin{aligned}
4 a+2 b & =-8 \\
4 \cdot(-5-b)+2 b & =-8 \\
-20-4 b+2 b & =-8 \quad \mid+20 \\
-2 b & =12 \quad \mid:(-2) \\
b & =-6
\end{aligned}
$$

[^11]By using the transformed equation (2) we directly get a.

$$
a=-5-b=-5-(-6)=-5+6=1
$$

Inserting all results we get the wanted function: $f(x)=x^{2}-6 x+8$

5.18 Exercise 18:

A parabula (quadratic function) has the vertex $S(-2 \mid 0)$ and runs through the point $P(-1 \mid-2)$. Specify the functional equation $f(x)$!

Solution: As we know the vertex, we should use the vertex form as a method of resolution. Only parameter \boldsymbol{a} is missing.

$$
\begin{aligned}
& f(x)=a \cdot\left(x-x_{V}\right)^{2}+y_{V} \\
& f(x)=a \cdot(x+2)^{2}+0
\end{aligned}
$$

Furthermore we know the coordinates of the point P. They must comply the functional equation.

$$
\begin{aligned}
f\left(x_{p}\right) & =y_{p} \\
a \cdot\left(x_{p}+2\right)^{2} & =y_{p} \\
a \cdot(-1+2)^{2} & =-2 \\
a \cdot 1^{2} & =-2 \\
a & =-2
\end{aligned}
$$

Using this value we can show the funtional equation in vertex form.

$$
f(x)=-2 \cdot(x+2)^{2}
$$

If you want, yo can transform the vertex form into the normal form.

$$
f(x)=-2 x^{2}-8 x-8
$$

The wanted function is: $f(x)=-2 \cdot(x+2)^{2} \quad$ or $\quad f(x)=-2 x^{2}-8 x-8$

5.19 Exercise 19:

Take the parabula of the function $f_{1}(x)=\frac{1}{2}(x-4)^{2}-1$ and shift her so far upwards, that she will hit the point $P(2 \mid 3)$. What ist the functional equation $f_{2}(x)$ of the new function?

Solution: To shift a function verticaly, we only have to add a constant value. I name it k.

$$
f_{2}(x)=\frac{1}{2}(x-4)^{2}-1+k
$$

In order that point P is expected to be hit by the parabula, the coordinates of P must fulfil the functional equation.

$$
\begin{aligned}
f_{2}\left(x_{P}\right) & =y_{P} \\
f_{2}(2) & =3 \\
\frac{1}{2} \cdot(2-4)^{2}-1+k & =3 \\
\frac{1}{2} \cdot(-2)^{2}-1+k & =3 \\
\frac{1}{2} \cdot 4-1+k & =3 \\
2-1+k & =3 \\
k & =2
\end{aligned}
$$

This value is inserted as k in the functional equation.

$$
f_{2}(x)=\frac{1}{2}(x-4)^{2}-1+2=\frac{1}{2}(x-4)^{2}+1
$$

If you want, yo can transform the vertex form into the normal form:

$$
\begin{aligned}
f_{2}(x) & ==\frac{1}{2}(x-4)^{2}+1 \\
& =\frac{1}{2} \cdot\left(x^{2}-8 x+16\right)+1 \\
& =\frac{1}{2} x^{2}-4 x+8+1 \\
f_{2}(x) & =\frac{1}{2} x^{2}-4 x+9
\end{aligned}
$$

The expected functional equation is:

$$
f_{2}(x)=\frac{1}{2}(x-4)^{2}+1 \quad \text { or: } \quad f_{2}(x)=\frac{1}{2} x^{2}-4 x+9
$$

5.20 Exercise 20:

You should shift the parabula of the quadratic equation $f_{1}(x)=\frac{1}{2} x^{2}-4 x+7$ so far to the left, that the new parabula hits the point $P\left(0 \left\lvert\, \frac{7}{2}\right.\right)$. Specify the corresponding functional equation $f_{2}(x)$. Show all possible solutions!

Solution: A shifting to the right with the value k means, that we replace the variable x with $(x-k)$. Appropiately means a negative value for k a shifting to the left. If you want a positive value of k, you alternativly can use $(x+k)$ für a shifting to the left. In my way of solution I use the first alternative.

$$
\begin{aligned}
f_{2}(x) & =f_{1}(x-k) \\
f_{2}(x) & =\frac{1}{2} \cdot(x-k)^{2}-4(x-k)+7
\end{aligned}
$$

Now we replace the coordinates of P for the variables x and y. So we can calculate k.

$$
\begin{aligned}
f_{2}(0) & =\frac{7}{2} \\
\frac{1}{2} \cdot(0-k)^{2}-4 \cdot(0-k)+7 & =\frac{7}{2} \\
\frac{1}{2} \cdot k^{2}+4 k+7 & =\frac{7}{2} \\
k^{2}+8 k+14 & =7 \\
k^{2}+8 k+7 & =0 \\
k_{1 / 2} & =-4 \pm \sqrt{4^{2}-7} \\
k_{1 / 2} & =-4 \pm 3 \\
k_{1}=-1 & k_{2}=-7
\end{aligned}
$$

As both results are negative, we have a shifting to the left in both cases. So both solutions are valid.

$$
\begin{aligned}
f_{21} & =\frac{1}{2} \cdot(x+1)^{2}-4 \cdot(x+1)+7 & f_{22} & =\frac{1}{2} \cdot(x+7)^{2}-4 \cdot(x+7)+7 \\
f_{21} & =\frac{1}{2} \cdot\left(x^{2}+2 x+1\right)-4 x-4+7 & f_{22} & =\frac{1}{2} \cdot\left(x^{2}+14 x+49\right)-4 x-28+7 \\
f_{21} & =\frac{1}{2} x^{2}+x+\frac{1}{2}-4 x+3 & f_{22} & =\frac{1}{2} x^{2}+7 x+\frac{49}{2}-4 x-21 \\
f_{21} & =\frac{1}{2} x^{2}-3 x+\frac{7}{2} & f_{22} & =\frac{1}{2} x^{2}+3 x+\frac{7}{2}
\end{aligned}
$$

Results: $f_{21}=\frac{1}{2} x^{2}-3 x+\frac{7}{2} \quad$ and: $\quad f_{22}=\frac{1}{2} x^{2}+3 x+\frac{7}{2}$

5.21 Exercise 21:

How has the parabula with the functional equation $f_{1}(x)=\frac{1}{2} x^{2}-4 x+7$ to be changed, that the point $P(3 \mid-6)$ belongs to the new parabula? The new parabula should have the same vertex als the old one. Secify the functional equation $f_{2}(x)$ of the new parabula!

Solution: In order, that you can imagine the context better, you find here an outline of both functional graphs.

At first we have to find out the (common) vertex. The easiest way to do this, is using the vertex formula ${ }^{13}$:

$$
\begin{gathered}
f(x)=a x^{2}+b x+c \quad \Rightarrow \quad x_{V}=-\frac{b}{2 a} \\
x_{V}=-\frac{b}{2 a}=-\frac{-4}{2 \cdot \frac{1}{2}}=4 \\
y_{V}=f\left(x_{V}\right)=\frac{1}{2} \cdot 4^{2}-4 \cdot 4+7=-1
\end{gathered}
$$

Using the known coordinates of the vertex we can set up the functional equation in vertex form.

$$
f_{2}(x)=a \cdot(x-4)^{2}-1
$$

To determine parameter a we insert the coordinates of $P(3 \mid-6)$ into the functional equation.

$$
\left.\begin{aligned}
f_{2}(3) & =-6 \\
a \cdot(3-4)^{2}-1 & =-6 \\
a \cdot(-1)^{2}-1 & =-6 \\
a-1 & =-6 \\
a & =-5
\end{aligned} \quad \right\rvert\,+1
$$

We can write down the functional equation:

$$
f_{2}(x)=-5 \cdot(x-4)^{2}-1
$$

[^12]
5.22 Exercise 22:

The parabula of the quadratic function $f_{1}(x)$ crosses the straight line of the function $f_{2}(x)=x-2$ at $x_{1}=-4$ and $x_{2}=1$. The parabula crosses the y-axis at $y_{0}=2$. Specify the functional equation $f_{1}(x)$!

Solution: In order, that you can imagine the context better, you find here an outline of both functional graphs.

At first we figure out the y-values of the crossing points P_{1} and P_{2}. For that purpuse we insert the x-values into the funktional equation f_{2}.

$$
\begin{array}{ll}
y_{1}=f_{2}\left(x_{1}\right) & y_{2}=f_{2}\left(x_{2}\right) \\
y_{1}=-4-2 & y_{2}=1-2 \\
y_{1}=-6 & y_{2}=-1
\end{array}
$$

So we have got the crossing points $P_{1}(-4 \mid-6)$ and $P_{2}(1 \mid-1)$. The crossing point with the y-axis is located at $x=0$. That means this point: $P_{3}(0 \mid 2)$ As we have three known points, we can set up a system of linear equations of the $3^{\text {rd }}$ order, when we start with the normal form of a quadratic function:

$$
f_{2}(x)=a x^{2}+b x+c
$$

$$
\begin{align*}
(1) & f(-4) & =-6 & \Rightarrow & a \cdot(-4)^{2}+b \cdot(-4)+c & =-6 \tag{1}\\
(2) & f(1) & =-1 & \Rightarrow & a \cdot 1^{2}+b \cdot 1+c & =-1 \\
(3) & f(0) & =2 & \Rightarrow & a \cdot 0^{2}+b \cdot 0+c & =2
\end{align*}
$$

When we condense the system of linear equations on the right side, we get:

As equation (3) immediately tells us the value $c=3$, we can insert this value in both other equations. We get a system of linear equations of the $2^{\text {nd }}$ order.

(1)	$16 a-4 b+2$	$=-6$	-2
(2)	$a+b+2$	$=-1$	-2
(1)	$16 a-4 b$	$=-8$	
(2)	$a+b$	$=-3$	

This system of linear equations can be solved with an arbitrary way of solution. I want to use the method of insertion. Therefore I solve equation (2) to a and insert the solution into equation (1).

$$
\text { (2) } \begin{aligned}
a+b & =-3 \quad \mid-b \\
a & =-3-b
\end{aligned}
$$

Inserted into (1):
(1)

$$
\begin{aligned}
16 a-4 b & =-8 \\
16 \cdot(-3-b)-4 b & =-8 \\
-48-16 b-4 b & =-8 \quad \mid+48 \\
-20 b & =40 \quad \mid:(-20) \\
b & =-2
\end{aligned}
$$

This value is inserted into the transformed equation (2).

$$
a=-3-b=-3-(-2)=-1
$$

Now we know all parameters. We can write down the functional equation.

$$
f_{2}(x)=-x^{2}-2 x+2
$$

5.23 Exercise 23:

Calculate the crossing points - if they exist - of the two parabulas with the functional equations $f_{1}(x)=x^{2}-2 x+3$ and $f_{2}(x)=2 x^{2}-8 x+12$.

Solution: To find out the crossing points we equate the functional equations.

$$
\begin{array}{rlrl}
f_{1}\left(x_{S}\right) & =f_{2}\left(x_{S}\right) & \\
x_{S}^{2}-2 x_{S}+3 & =2 x_{S}^{2}-8 x_{S}+12 & & \mid-2 x_{S}^{2}+8 x_{S}-12 \\
-x_{S}^{2}+6 x_{S}-9 & =0 & & \mid \cdot(-1) \\
x_{S}^{2}-6 x_{S}+9 & =0 & & \\
x_{S 1 / 2} & =3 \pm \sqrt{9-9} & & \\
x_{S} & =3 & &
\end{array}
$$

We have got only one value. So we have only one crossing point, a touching point. To specify the y-value we insert this value x_{S} into f_{1} or f_{2}. I want to use f_{1}.

$$
\begin{aligned}
y_{S} & =f_{1}\left(x_{S}\right) \\
& =x_{S}^{2}-2 x_{S}+3 \\
& =3^{2}-2 \cdot 3+3 \\
y_{S} & =6
\end{aligned}
$$

We can show the crossing point: $S(3 \mid 6)$
You see the course of the funktions underneath.

5.24 Exercise 24:

A parabula with the shape factor $a=2$ runs through the points $P_{1}(1 \mid-1)$ and $P_{2}(2 \mid 1)$. Specify the functional equation $f(x)$!

Solution: We know the normal form of the quadratic function:

$$
f(x)=a x^{2}+b x+c
$$

As a is known as $a=2$, we can specify:

$$
f(x)=2 x^{2}+b x+c
$$

Now we have to calculate the parameters b and c. For that purpose we insert the known coordinates of $P_{1}(1 \mid-1)$ and $P_{2}(2 \mid 1)$ as x and y into this formula.

$$
\begin{aligned}
& P_{1}(1 \mid-1) \Rightarrow f(1)=-1 \Rightarrow 2 \cdot 1^{2}+b \cdot 1+c=-1 \\
& P_{2}(2 \mid 1) \quad \Rightarrow \quad f(2)=1 \Rightarrow 2 \cdot 2^{2}+b \cdot 2+c=1
\end{aligned}
$$

Both equations at first become simplified and transformed into the normal form.

$$
\begin{aligned}
& \text { (1) } 2+b+c=-1 \mid-2 \\
& \begin{aligned}
\text { (2) } 8+2 b+c & =1 \quad \mid-8 \\
\hline(1) \quad b+c & =-3
\end{aligned} \\
& \text { (2) } 2 b+c=-7
\end{aligned}
$$

Now we have got a $2^{\text {nd }}$ order system of linear equations. We can solve it with any method. As we find parameter c in both equations without any coefficient, it is suggesting itself to subtract both equations from each other. Parameter c then will disappear. As the coefficient of b in equation (2) - here: $2 b$ - is larger, as in equation (1) - here: $1 b$ - I subtract equation (1) from equation (2). Then the result will be positive. (Of course it also will work otherwise, but then we will get $-b$.)

$$
\begin{aligned}
(1) \quad b+c & =-3 \\
(2) \quad 2 b+c & =-7 \\
\hline(2)-(1) \quad b & =-4
\end{aligned}
$$

Now we already have b. To get the remainig parameter c we put this result into one of the two equations. As in (1) the numbers are a little bit smaller, I use this equation.

$$
\begin{aligned}
b+c & =-3 \\
-4+c & =-3 \quad \mid+4 \\
c & =1
\end{aligned}
$$

With this results we can write down the functional equation:

$$
f(x)=2 x^{2}-4 x+1
$$

5.25 Exercise 25:

A parabula crosses the points $P_{1}(2 \mid 7)$ und $P_{2}(3 \mid 6)$ and cuts the y-axis at $y_{0}=3$. Find out the functional equation $f(x)$!

Solution: We start with the normal form:

$$
f(x)=a x^{2}+b x+c
$$

The y-axis intercept at $y_{0}=3$ means $c=y_{0}=3$. With that the equation gets this form:

$$
f(x)=a x^{2}+b x+3
$$

We now have to calculate the parameters a and b. For that purpose we place the coordinates of the known points into the functional equation as x and y.

$$
\begin{aligned}
& P_{1}(2 \mid 7) \Rightarrow f(2)=7 \Rightarrow a \cdot 2^{2}+b \cdot 2+3=7 \\
& P_{2}(3 \mid 6) \Rightarrow f(3)=6 \Rightarrow a \cdot 3^{2}+b \cdot 3+3=6
\end{aligned}
$$

Both resulting equations become simplified an then transformed into the normal form.

$$
\left.\begin{aligned}
\text { (1) } 4 a+2 b+3 & =7 \\
\text { (2) } 9 a+3 b+3 & =6 \mid-3 \\
\hline \text { (1) } & 4 a+2 b
\end{aligned}=4 \right\rvert\,-3 .
$$

We have got a system of linear equations of the $2^{\text {nd }}$ order to solve within an arbitrary method. I use the method of insertion, as no method is particulary suitable. Therefore I transform equation (1) to b.

$$
\text { (1) } \begin{aligned}
4 a+2 b & =4 \\
2 b & =4-4 a \quad \mid: 2 \\
b & =2-2 a
\end{aligned}
$$

The result is inserted into equation (2).

$$
\begin{align*}
9 a+3 b & =3 \tag{2}\\
9 a+3 \cdot(2-2 a) & =3 \\
9 a+6-6 a & =3 \\
3 a & =-3 \mid-6 \\
a & =-1
\end{align*}
$$

To get the last unknown parameter b we insert this result into the transformed equation (1).

$$
b=2-2 a=2-2 \cdot(-1)=2+2=4
$$

So we have got the wanted functional equation:

$$
f(x)=-x^{2}+4 x+3
$$

5.26 Exercise 26:

Shift the parabula with the functional equation $f_{1}(x)=3 x^{2}-4$ in a way, that the new parabula crosses the points $P_{1}(3 \mid 2)$ und $P_{2}(6 \mid-7)$. Specify the functional equation $f_{2}(x)$, that occured by this shifting.

Solution: The only detail, that does not change by shifting, is the shape of the parabula and with it the shape factor a. We can read the shape factor a from f_{1} as $a=3$. With this value we get the normal form of the functional equation:

$$
f_{2}(x)=3 x^{2}+b x+c
$$

We place the coordinates of the known points into the functional equation as x and y.

$$
\begin{aligned}
& P_{1}(3 \mid 2) \Rightarrow f(3)=2 \Rightarrow 3 \cdot 3^{2}+b \cdot 3+c=2 \\
& P_{2}(6 \mid-7) \Rightarrow f(6)=-7 \Rightarrow 3 \cdot 6^{2}+b \cdot 6+c=-7
\end{aligned}
$$

Both resulting equations become simplified an then transformed into the normal form.

$$
\begin{aligned}
\text { (1) } & 27+3 b+c & =2 & \mid-27 \\
\text { (2) } & 108+6 b+c & =-7 & \mid-108 \\
\hline(1) & 3 b+c & =-25 & \\
\text { (2) } & 6 b+c & =-115 &
\end{aligned}
$$

Now we have got a $2^{\text {nd }}$ order system of linear equations. We can solve it with any method. As we find parameter c in both equations without any coefficient, it is suggesting itself to subtract both equations from each other. Parameter c then will disappear. As the coefficient of b in equation (2) - here: $6 b$ - is larger, as in equation (1) - here: $1 b-\mathrm{I}$ subtract equation (1) from equation (2). Then the result will be positive. (Of course it also will work otherwise, but then we will get $-b$.)

Now we already have b. To get the remainig parameter c we put this result into one of the two equations. As in (1) the numbers are a little bit smaller, I use this equation.

$$
\begin{aligned}
3 b+c & =-25 \\
3 \cdot(-30)+c & =-25 \\
-90+c & =-25 \quad \mid+90 \\
c & =65
\end{aligned}
$$

With this results we can write down the wanted functional equation:

$$
f(x)=3 x^{2}-30 x+65
$$

5.27 Exercise 27:

A quadratic function has the shape factor $a=-1$ and the vertex $V(2 \mid 3)$. Specify the functional equation $f(x)$ in vertex form and in normal form!

Solution: We immediately can write down the functional equation in vertex form:

$$
f(x)=-(x-2)^{2}+3
$$

The transformation into the normal form can be done by using the $2^{\text {nd }}$ binomial formula.

$$
\begin{aligned}
f(x) & =-(x-2)^{2}+3 \\
& =-\left(x^{2}-4 x+4\right)+3 \\
& =-x^{2}+4 x-4+3 \\
f(x) & =-x^{2}-4 x-1
\end{aligned}
$$

Here we have the functional equation in normal form:

$$
f(x)=-x^{2}-4 x-1
$$

5.28 Exercise 28:

The functional graph of a quadratic function has the vertex $V(3 \mid-1)$ and runs through the point $P(1 \mid 7)$. Specify the functional equation $f(x)$ in vertex form and in normal form!

Solution: We start with the concept of vertex form.

$$
f(x)=a \cdot(x-3)^{2}-1
$$

To figure out the shape factor a we insert the coordinates of the known point $P(1 \mid 7)$.

$$
\begin{aligned}
f\left(x_{p}\right) & =y_{p} \\
a \cdot\left(x_{p}-3\right)^{2}-1 & =y_{p} \\
a \cdot(1-3)^{2}-1 & =7 \\
a \cdot(-2)^{2}-1 & =7 \\
4 a-1 & =7 \\
4 a & =8 \\
a & =2
\end{aligned}
$$

With this we can write down the functional equation in vertex form.

$$
f(x)=2 \cdot(x-3)^{2}-1
$$

The transformation into the normal form can be done by using the $2^{\text {nd }}$ binomial formula.

$$
\begin{aligned}
f(x) & =2 \cdot(x-3)^{2}-1 \\
& =2 \cdot\left(x^{2}-6 x+9\right)-1 \\
& =2 x^{2}-12 x+18-1 \\
f(x) & =2 x^{2}-12 x+17
\end{aligned}
$$

Here we have the functional equation in normal form:

$$
f(x)=2 x^{2}-12 x+17
$$

5.29 Exercise 29:

We have a quadratic function with the functional equation $f(x)=-2 x^{2}-4 x+6$. Calculate the vertex and the zeros!

Solution:

First variant of solution: At first we calculate the zeros. "On the way" we can find the x-value x_{V} of the vertex.

To figure out the zeros we must equate the functional term to zero.

$$
\begin{array}{rlrl}
-2 x_{0}^{2}-4 x_{0}+6 & =0 & \mid:(-2) \tag{-2}\\
x_{0}^{2}+2 x_{0}-3 & =0 & \mid \text { use } p \text { - } q \text {-formula } \\
x_{01 / 02} & =-\frac{2}{2} \pm \sqrt{\left(\frac{2}{2}\right)^{2}-(-3)} & \\
& =-1 \pm \sqrt{1+3} & & \\
& =-1 \pm 2 & & \\
x_{0} 1=-1+2=1 & & x_{0} 2=-1-2=-3 &
\end{array}
$$

The zeros ar: $x_{01}=1$ and $x_{02}=-3$
In front of the sign \pm and the root we find the value -1 . This is the x-value x_{V} of the vertex.

$$
x_{V}=-1
$$

To find the corresponding y-Value y_{V} we insert $x_{V}=-1$ into the functional equation.

$$
\begin{aligned}
y_{V} & =f\left(x_{V}\right) \\
& =-2 x_{V}^{2}-4 x_{V}+6 \\
& =-2 \cdot(-1)^{2}-4 \cdot(-1)+6 \\
& =-2+4+6 \\
y_{V} & =8
\end{aligned}
$$

The vertex is named: $S(-1 \mid 8)$

Second variant of solution: We can find the x-value x_{V} of the vertex with the vertex formula.

$$
\begin{aligned}
x_{V} & =-\frac{b}{2 a} \\
& =-\frac{-4}{2 \cdot(-2)} \\
& =\frac{4}{-4} \\
x_{V} & =-1
\end{aligned}
$$

(Continue like described in first variant of solution.)

5.30 Exercise 30:

A parabula with the vertex $V(4 \mid 7)$ crosses the y-axis at $y_{0}=4$. Specify the associated functional equation!

Solution: We start with the vertex form of the functional equation.

$$
f(x)=a \cdot(x-4)^{2}+7
$$

To calculate the missing shape factor a, we have two possibilities.

First variant of solution: The y-axis is placed at the position $x=0$. So we know the crossing point at $\left(0 \mid y_{0}\right)$ respectively $(0 \mid 3)$. We insert this coordinates into the vertex form.

$$
\begin{aligned}
f(0) & =3 \\
a \cdot(0-4)^{2}+7 & =3 \\
a \cdot 16+7 & =3 \\
16 a & =-4 \mid-7 \\
a & =-\frac{1}{4}
\end{aligned}
$$

We have got the functional equation in vertex form:

$$
f(x)=-\frac{1}{4} \cdot(x-4)^{2}+7
$$

Second variant of solution: The other procedure to get a is as follows. We start with the vertex form, transform it into the normal form and read out the parameter c. This value is the value of y_{0}.

$$
\begin{aligned}
f(x) & =a \cdot(x-4)^{2}+7 \\
& =a \cdot\left(x^{2}-8 x+16\right)+7 \\
f(x) & =a x^{2}-8 a x+\underbrace{16 a+7}_{c}
\end{aligned}
$$

We equate c with the known value $y_{0}=3$.

$$
\begin{aligned}
c & =y_{0} \\
16 a+7 & =3 \\
16 a & =-4 \quad \mid-7 \\
a & =-\frac{1}{4}
\end{aligned}
$$

By this variant of solution we get the same functional equation in vertex form:

$$
f(x)=-\frac{1}{4} \cdot(x-4)^{2}+7
$$

5.31 Exercise 31:

We have a quadratic function with the functional equation:

$$
f_{1}(x)=3 x^{2}+24 x+53
$$

We are looking for the function f_{2} with the same vertex as f_{1}. The related parabula of f_{2} should cross the point $P(-2 \mid-3)$.

Solution: First we have to find out the vertex of f_{1}. We use the vertex formula.

$$
\begin{aligned}
x_{V} & =-\frac{b}{2 a} \\
& =-\frac{24}{2 \cdot 3} \\
x_{V} & =-4
\end{aligned}
$$

The corresponding y-value y_{V} we get by using the functional equation of f_{1}.

$$
\begin{aligned}
y_{V} & =f_{1}\left(x_{V}\right) \\
& =3 x_{V}^{2}+24 x_{V}+53 \\
& =3 \cdot(-4)^{2}+24 \cdot(-4)+53 \\
& =48-96+53 \\
y_{V} & =5
\end{aligned}
$$

So the common vertex of f_{1} and f_{2} is named: $S(-4 \mid 5)$
With this results we can setup the functional equation of f_{2} in vertex form.

$$
f_{2}(x)=a \cdot(x+4)^{2}+5
$$

To figure out the shape factor a we insert the coordinates of the known point $P(-2 \mid-3)$.

$$
\begin{aligned}
f_{2}(-2) & =-3 \\
a \cdot(-2+4)^{2}+5 & =-3 \\
a \cdot 2^{2} & =-8 \\
4 a & =-8 \mid-5 \\
a & =-2
\end{aligned}
$$

With this result we can write down the functional equation of f_{2} :

$$
f(x)=-2 \cdot(x+4)^{2}+5
$$

5.32 Exercise 32:

A parabula crosses the points $P_{1}(0 \mid 14)$ and $P_{2}(2 \mid-2)$. The vertex can be found at $x_{V}=3$. Specify the related functional equation $f(x)$!

Solution: Using the vertex $V\left(3 \mid y_{V}\right)$ we can make the solution approach with the functional equation in vertex form.

$$
f(x)=a \cdot(x-3)^{2}+y_{V}
$$

We insert the coordinates of both points $P_{1}(0 \mid 14)$ and $P_{2}(2 \mid-2)$.

$$
\begin{aligned}
P_{1}(0 \mid 14) & \Rightarrow f(0)=14 \Rightarrow a \cdot(0-3)^{2}+y_{V}=14 \\
P_{2}(2 \mid-2) & \Rightarrow f(2)=-2 \Rightarrow a \cdot(2-3)^{2}+y_{V}=-2
\end{aligned}
$$

We have got a system of linear equations of $2^{\text {nd }}$ order with the variables a and b. We simplify the equations a little bit.

$$
\begin{aligned}
& \text { (1) } a \cdot(0-3)^{2}+y_{V}=14 \\
& \begin{aligned}
\text { (2) } a \cdot(2-3)^{2}+y_{V} & =-2 \\
\hline 9 a+y_{V} & =14
\end{aligned} \\
& \text { (2) } \quad a+y_{V}=-2
\end{aligned}
$$

To solve this system of linear equations it is recommendable to use method of addition and subtraction ${ }^{14}$. We can subtract equation (2) from equation (1), then y_{V} will disappear.

$$
\left.\begin{array}{rlll}
\text { (1) } 9 a+y_{V} & =14 & 1 \\
(2) & a+y_{V} & = & -2
\end{array} \right\rvert\,-9 .
$$

By the use of equation (2) we get y_{V}.

$$
\begin{aligned}
a+y_{V} & =-2 \\
2+y_{V} & =-2 \quad \mid-2 \\
y_{V} & =-4
\end{aligned}
$$

Now all parameters are known. We can write down the functional equation:

$$
f(x)=2 \cdot(x-3)^{2}-4
$$

If you want, you can transform this equation into normal form.

$$
\begin{aligned}
f(x) & =2 \cdot(x-3)^{2}-4 \\
& =2 \cdot\left(x^{2}-6 x+9\right)-4 \\
& =2 x^{2}-12 x+18-4 \\
f(x) & =2 x^{2}-12 x+14
\end{aligned}
$$

[^13]
5.33 Exercise 33:

Which of these five functions have the same vertex?

$$
\begin{aligned}
f_{1}(x) & =x^{2}-10 x+21 \\
f_{2}(x) & =3 x^{2}-30 x+71 \\
f_{3}(x) & =-2 x^{2}+20 x-48 \\
f_{4}(x) & =0,5 x^{2}+5 x+8,5 \\
f_{5}(x) & =4 \cdot(x-5)^{2}-4
\end{aligned}
$$

Solution: To answer this question we must figure out all vertexes.

$$
\begin{gathered}
x_{V 1}=-\frac{b}{2 a} \\
=-\frac{-10}{2 \cdot 1} \\
x_{V 1}=5 \\
y_{V 1}=f_{1}\left(x_{V 1}\right) \\
= \\
=x_{V 1}^{2}-10 x_{V 1}+21 \\
y_{V 1}= \\
\\
\\
\\
\left.V_{1}(5)-4\right) \\
\\
x_{V 2}=-\frac{b}{2 a} \\
\\
\\
x_{V 2}=-\frac{-30}{2 \cdot 3} \\
y_{V 2}= \\
=
\end{gathered}
$$

$$
\begin{aligned}
y_{V 3}= & f_{3}\left(x_{V 3}\right) \\
= & -2 \cdot x_{V 3}^{2}+20 x_{V 3}-48 \\
= & -2 \cdot 5^{2}+20 \cdot 5-48 \\
= & -50+100-48 \\
y_{V 3}= & 2 \\
& V_{3}(5 \mid 2) \\
& \\
& x_{V 4}=-\frac{b}{2 a} \\
& =-\frac{5}{2 \cdot 0,5} \\
& x_{V 4}=-5 \\
= & f_{4}\left(x_{V 4}\right) \\
= & 0,5 \cdot x_{V 4}^{2}+5 x_{V 4}+8,5 \\
= & 0,5 \cdot(-5)^{2}+5 \cdot(-5)+8,5 \\
= & 12,5-25+8,5 \\
y_{V 4}= & -4 \\
y_{V 4}= & V_{4}(-5 \mid-4)
\end{aligned}
$$

As f_{5} is given in vertex form, we immediately can read out the coordinates of the vertex.

$$
V_{5}(5 \mid-4)
$$

Result: The vertexes V_{1}, V_{2} and V_{5} are identically. At V_{3} we have an other y-value, at V_{4} is an other x-value.

5.34 Exercise 34:

We have given the function f_{1} with the functional equation

$$
f_{1}(x)=4 x^{2}-24 x+37
$$

We want to find out the functional equation f_{2} of a parabula, that is produced by rotating the parabula of f_{1} with an angle of 180° around the vertex, as shown in the graphic on the right side.

Solution: At first we find out the vertex of f_{1} by usung the vertex formula.

$$
\begin{aligned}
x_{V} & =-\frac{b}{2 a} \\
& =-\frac{-24}{2 \cdot 4} \\
& x_{V}=3 \\
y_{V}= & f_{1}\left(x_{V}\right) \\
& =4 x_{V}^{2}-24 x_{V}+37 \\
& =4 \cdot 3^{2}-24 \cdot 3+37 \\
& =36-72+37 \\
y_{V}= & 1
\end{aligned}
$$

By rotaning the parabula with an angle of 180° the shape factor of $a_{1}=4$ is inverted.

$$
\begin{aligned}
a_{2} & =-a_{1} \\
a_{2} & =-4
\end{aligned}
$$

Using this data we can write down the functional equation in vertex form.

$$
f_{2}(x)=-4 \cdot(x-3)^{2}+1
$$

If you want, you can transform this into the normal form, although this is not requested.

$$
\begin{aligned}
f_{2}(x) & =-4 \cdot(x-3)^{2}+1 \\
& =-4 \cdot\left(x^{2}-6 x+9\right)+1 \\
f_{2}(x) & =-4 x^{4}+24 x-35
\end{aligned}
$$

5.35 Exercise 35:

Find out the crossing points of the parabula with $f_{1}(x)=10 x^{2}+12 x-4$ and the stright line with $f_{2}(x)=9 x-3$.

Solution:

$$
\begin{array}{rlrl}
f_{1}\left(x_{S}\right) & =f_{2}\left(x_{S}\right) & & \mid-9 x_{S}+3 \\
10 x_{S}^{2}+12 x_{S}-4 & =9 x_{S}-3 & \mid: 10 \\
10 x_{S}^{2}+3 x_{S}-1 & =0 & \\
x_{S}^{2}+0,3 x_{S}-0,1 & =0 & \\
x_{S 1 / 2} & =-0,15 \pm \sqrt{0,15^{2}+0,1} & \\
& =-0,15 \pm 0,35 & \\
x_{S 1}=-0,15+0,35=0,2 & & x_{S 2}=-0,15-0,35=-0,5 & \\
y_{S 1} & =f_{2}\left(x_{S 1}\right. & \\
& =9 \cdot 0,2-3 \\
y_{S 1} & =-1,2 \\
y_{S 2} & =f_{2}\left(x_{S 2}\right) \\
& =9 \cdot(-0,5)-3 & \\
y_{S 2} & =-7,5
\end{array}
$$

Result: $S_{1}(0,2 \mid-1,2)$ and $\quad S_{2}(-0,5 \mid-7,5)$
An outline of the graphs of the functional equations:

[^0]: ${ }^{1}$ If the parabola is opened downwards, the vertex is the highest point.

[^1]: ${ }^{2}$ For details of the p-q-formula look here: http://www.dk4ek.de/lib/exe/fetch.php/quad.pdf

[^2]: ${ }^{3}$ I wrote down details of shifting function graphs here:
 http://www.dk4ek.de/lib/exe/fetch.php/transfo.pdf

[^3]: ${ }^{4}$ See also here: http://www.dk4ek.de/lib/exe/fetch.php/lin.pdf

[^4]: ${ }^{5}$ For details of the first binomial formula look here:
 http://www.dk4ek.de/lib/exe/fetch.php/binom.pdf

[^5]: ${ }^{6}$ See for details of methods to solve a system of equations here:
 http://www.dk4ek.de/lib/exe/fetch.php/lingl.pdf

[^6]: ${ }^{7}$ See for details of methods to solve a system of equations here:
 http://www.dk4ek.de/lib/exe/fetch.php/lingl.pdf

[^7]: ${ }^{8}$ See for details of method of subtraction here:
 http://www.dk4ek.de/lib/exe/fetch.php/add.pdf

[^8]: ${ }^{9}$ For details of the method of insertion look here:
 http://www.dk4ek.de/lib/exe/fetch.php/einsetz.pdf

[^9]: ${ }^{10}$ For details of the p-q-formula look here: http://www.dk4ek.de/lib/exe/fetch.php/quad.pdf

[^10]: ${ }^{11}$ For details look here: http://www.dk4ek.de/lib/exe/fetch.php/cramer.pdf

[^11]: ${ }^{12}$ For details look here: http://www.dk4ek.de/lib/exe/fetch.php/einsetz.pdf

[^12]: ${ }^{13}$ Look here in chapter 2.2

[^13]: ${ }^{14}$ For details of the method of addition and subtraction look here: http://www.dk4ek.de/lib/exe/fetch.php/add.pdf

