Lösungen der Übungsaufgaben zur Berechnung von Netzwerken

W. Kippels

21. Oktober 2017

Inhaltsverzeichnis

1 Allgemeines				
2	Übu 2.1		gen mit Antworten 3 rsfragen zu Spannungs- und Stromquellen 3 Frage 1 3 Frage 2 3 Frage 3 3 Frage 4 3 Frage 5 4	
3	Ersa 3.1		tung für Spannungsteiler sfragen zur Ersatzschaltung für Spannungsteiler Aufgabe 1 Aufgabe 2 Aufgabe 3	
4	Der	Überla	gerungssatz 7	
5	Zus a 5.1		fassung 7 neine Übungsaufgaben 7 Aufgabe 4 7 Aufgabe 5 8 Aufgabe 6 10 Aufgabe 7 11 Aufgabe 8 12 Aufgabe 9 14 Aufgabe 10 15 Aufgabe 11 18	

		5.1.9	Aufgabe 12			20
		5.1.10	Aufgabe 13			22
		5.1.11	Aufgabe 14		2	24
6	Das	Masch	enstromverfa	hren	2	26
	6.1	Übung	saufgaben zur	n Maschenstromverfahren		26
		6.1.1	Aufgabe 15			26
		6.1.2	Aufgabe 16			28
		6.1.3	Aufgabe 17			31
		6.1.4	Aufgabe 18			33
		6.1.5	Aufgabe 19			36
		6.1.6	Aufgabe 20			38
		6.1.7	Aufgabe 21			40
		6.1.8	Aufgabe 22		4	42
		6.1.9	Aufgabe 23		4	44
7	Gen	nischte	Aufgaben		2	46
	7.1	Berech	nung der Strö	ome		46
		7.1.1	Aufgabe 24			46
		7.1.2	Aufgabe 25			50
		7.1.3	Aufgabe 26			53
		7.1.4	Aufgabe 27			55
		7.1.5	Aufgabe 28			57
		7.1.6	Aufgabe 29		(62
		7.1.7	Aufgabe 30			65
		7.1.8	Aufgabe 31		(68

1 Allgemeines

Nachfolgend sind einige Übungsfragen mit Lösungen aufgelistet. Sie gehören zu meinem Lehrgang **Berechnung von Netzwerken**, den man hier finden kann:

http://www.dk4ek.de/lib/exe/fetch.php/netzwerk.pdf

2 Übungsfragen mit Antworten

2.1 Übungsfragen zu Spannungs- und Stromquellen

2.1.1 Frage 1

Welches Merkmal kennzeichnet eine ideale Spannungsquelle?

Antwort:

Eine ideale Spannungsquelle liefert lastunabhängig eine konstante Spannung.

2.1.2 Frage 2

Welches Merkmal kennzeichnet eine ideale Stromquelle?

Antwort:

Eine ideale Stromquelle liefert lastunabhängig einen konstanten Strom.

2.1.3 Frage 3

Welcher Betriebszustand ist für eine ideale Stromquelle unzulässig?

Antwort:

Die ideale Stromquelle darf niemals im Leerlauf betrieben werden.

2.1.4 Frage 4

Welcher Betriebszustand ist für eine reale Stromquelle unzulässig?

Antwort:

Eine **reale** Stromquelle kann in **jedem** Betriebszustand betrieben werden, sowohl Leerlauf als auch Kurzschluss sind zulässig.

2.1.5 Frage 5

Eine Batterie hat eine Leerlaufspannung von 3 V. Wird sie mit einem Strom von 100 mA belastet, bricht die Spannung auf 2,8 V zusammen. Berechnen Sie

- für die Ersatzschaltung als reale Spannungsquelle
 - die Urspannung U_0 .
 - den Innenwiderstand R_i .
- für die Ersatzschaltung als reale Stromquelle
 - den Urstrom I_0 .
 - den Innenwiderstand R_i .

Antwort:

Urspannung:

Die Urspannung U_0 ist identisch mit der Leerlaufspannung. Also ist:

$$U_0 = 3 \,\mathrm{V}$$

Innenwiderstand:

Am Innenwiderstand fällt bei Belastung die Differenz zwischen der Urspannung U_0 und U ab. Damit kann R_i mit Hilfe des Ohmschen Gesetzes bestimmt werden.

$$R_{i} = \frac{\Delta U}{I}$$

$$= \frac{U_{0} - U}{I}$$

$$= \frac{3 \text{ V} - 2,8 \text{ V}}{100 \text{ mA}}$$

$$= \frac{0,2 \text{ V}}{100 \text{ mA}}$$

$$R_{i} = 2 \Omega$$

Dieser Innenwiderstand gilt natürlich für beide Schaltungen.

<u>Urstrom:</u>

Der Urstrom I_0 der Stromquellenschaltung ist gleich dem Kurzschlussstrom der Spannungsquellenschaltung. Wenn die Schaltung kurzgeschlossen wird, liegt die gesamte Urspannung U_0 an R_i an.

$$I_0 = \frac{U_0}{R_i} = \frac{3 \text{ V}}{2 \Omega} = 1,5 \text{ A}$$

3 Ersatzschaltung für Spannungsteiler

3.1 Übungsfragen zur Ersatzschaltung für Spannungsteiler

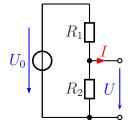
3.1.1 Aufgabe 1

Gegeben ist nebenstehende Schaltung mit folgenden Werten:

$$U_0 = 10 \,\mathrm{V}$$

$$R_1 = 200 \,\Omega$$

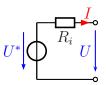
$$R_2 = 300 \,\Omega$$



Geben Sie eine einfache Ersatzschaltung an und bestimmen Sie alle Bauelemente der Ersatzschaltung!

Antwort:

Nebenstehend ist die gesuchte Ersatzschaltung dargestellt. Hierin müssen noch die Werte für U^* und R_i bestimmt werden.



Die Ersatzspannung U^* ist gleich der Leerlaufspannung des Spannungsteilers.

$$U^* = \frac{U_0 \cdot R_2}{R_1 + R_2} = \frac{10 \,\text{V} \cdot 300 \,\Omega}{200 \,\Omega + 300 \,\Omega} = 6 \,\text{V}$$

Der Innenwiderstand R_i ist gleich der Parallelschaltung der beiden Teilerwiderstände R_1 und R_2 .

$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{200 \,\Omega \cdot 300 \,\Omega}{200 \,\Omega + 300 \,\Omega} = 120 \,\Omega$$

3.1.2 Aufgabe 2

Mit Hilfe eines Spannungsteilers aus zwei Widerständen zu je $100\,\Omega$ soll eine Spannung von $12\,V$ auf die Hälfte heruntergeteilt werden. Welchen Innenwiderstand hat dieser Spannungsteiler?

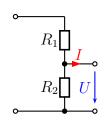
Antwort:

Der Innenwiderstand R_i entspricht der Parallelschaltung der Teilerwiderstände.

$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{100 \,\Omega \cdot 100 \,\Omega}{100 \,\Omega + 100 \,\Omega} = 50 \,\Omega$$

3.1.3 Aufgabe 3

An eine reale Spannungsquelle mit einer Leerlaufspannung von $U_0 = 12 \text{ V}$ und einem Innenwiderstand von $R_i = 10 \Omega$ wird nebenstehender Spannungsteiler mit $R_1 = 90 \Omega$ und $R_2 = 400 \Omega$ angeschlossen.



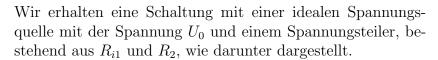
Ergänzen Sie zunächst die Schaltung um die reale Spannungsquelle. Wandeln Sie dann die gesamte Schaltung in eine Spannungsquelle mit Innenwiderstand um. Wie groß ist der Innenwiderstand R_i^* und die Urspannung U^* dieser Ersatzschaltung?

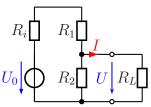
Belasten sie nun die Schaltung mit einem Lastwiderstand von $R_L = 20 \Omega$. Welche Ausgangsspannung ergibt sich mit dieser Belastung?

Antwort:

Nebenstehend ist die ergänzte Schaltung dargestellt. Darin kann zunächst R_i und R_1 zu R_{i1} zusammengefasst werden.

$$R_{i1} = R_i + R_1 = 10 \Omega + 90 \Omega = 100 \Omega$$





In der neuen Ersatzschaltung kann nun die Schaltgruppe bestehend aus U_0 , R_{i1} und R_2 in eine neue Spannungsquelle mit der Spannung U^* und dem Innenwiderstand R_i^* umgerechnet werden. Beginnen wir mit dem Innenwiderstand R_i^* .

$$R_i^* = \frac{R_{i1} \cdot R_2}{R_{i1} + R_2} = \frac{100 \,\Omega \cdot 400 \,\Omega}{100 \,\Omega + 400 \,\Omega} = 80 \,\Omega$$

$$U^* = \frac{U_0 \cdot R_2}{R_{i1} + R_2} = \frac{12 \,\text{V} \cdot 400 \,\Omega}{100 \,\Omega + 400 \,\Omega} = 9.6 \,\text{V}$$

Mit R_i^* , U^* und R_L erhalten wir nun eine einfache Spannungsteilerschaltung, deren Ausgangsspannung U mit der bekannten Spannungsteilerschaltungsformel bestimmt werden kann. Dazu passt die nebenstehend dargestellte Ersatzschaltung.

$$U^* \bigcup R_i^* U R_L$$

$$U = \frac{U^* \cdot R_L}{R_i^* + R_L} = \frac{9.6 \,\mathrm{V} \cdot 20 \,\Omega}{80 \,\Omega + 20 \,\Omega} = 1.92 \,\mathrm{V}$$

Natürlich kann die gleiche Aufgabe auch anders berechnet werden, beispielsweise durch schrittweise Zusammenfassung der Widerstandsgruppen.

4 Der Überlagerungssatz

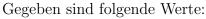
In diesem Kapitel sind keine eigenständigen Aufgaben vorhanden. Die Aufgaben im nächsten Kapitel können mit unterschiedlichen Verfahren gelöst werden, also (zum Teil) auch mit dem Überlagerungssatz.

5 Zusammenfassung

5.1 Allgemeine Übungsaufgaben

5.1.1 Aufgabe 4

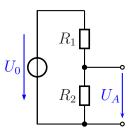
Wandeln Sie die Schaltung in eine möglichst einfache Ersatzschaltung um! Geben Sie dabei auch die Werte der Bauelemente der Ersatzschaltung an.



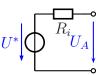
 $R_1 = 100 \,\Omega$

 $R_2 = 400 \,\Omega$

 $U_0 = 15 \,\mathrm{V}$



Lösung: Nebenstehend ist die gesuchte Ersatzschaltung dargestellt. Die Bauelemente U^* und R_i müssen berechnet werden.



Die Spannung U^* ist die Ausgangsspannung des unbelasteten Spannungsteilers. Sie kann über die mehr oder weniger bekannte Spannungsteilerformel berechnet werden.

$$U^* = \frac{R_2}{R_1 + R_2} \cdot U_0 = \frac{400 \,\Omega}{100 \,\Omega + 400 \,\Omega} \cdot 15 \,\text{V} = 12 \,\text{V}$$

Der Widerstand R_i ist die Parallelschaltung aus R_1 und R_2 . Wir erhalten:

$$\begin{array}{rcl} \frac{1}{R_i} & = & \frac{1}{R_1} + \frac{1}{R_2} \\ \frac{1}{R_i} & = & \frac{1}{100 \,\Omega} + \frac{1}{400 \,\Omega} \\ R_i & = & 80 \,\Omega \end{array}$$

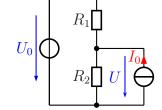
5.1.2 Aufgabe 5

Gegeben ist nebenstehende Schaltung mit folgenden Werten:

$$U_0 = 10 \text{ V}$$

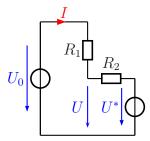
 $I_0 = 0.2 \text{ A}$
 $R_1 = 20 \Omega$

$$R_2 = 30 \,\Omega$$



Wie groß ist die Spannung U an R_2 ?

Lösungsvariante 1: Der Schaltungsteil bestehend aus R_2 und I_0 wird ersetzt durch eine Ersatzspannungsquelle U^* mit Innenwiderstand. Dieser Innenwiderstand bleibt R_2 .



Berechnen wir zunächst U^* . Das ist die **Leerlaufspannung** an R_2 , wenn nur I_0 angschlossen ist.

$$U^* = R_2 \cdot I_0 = 30 \,\Omega \cdot 0.2 \,A = 6 \,V$$

Den Strom durch die beiden Widerstände nennen wir I. Ein anderer Strom tritt ja nicht auf. Dann kann I durch die Spannungsdifferenz und die Widerstandssumme berechnet werden:

$$I = \frac{U_0 - U^*}{R_1 + R_2} = \frac{10 \,\mathrm{V} - 6 \,\mathrm{V}}{20 \,\Omega + 30 \,\Omega} = 80 \,\mathrm{mA}$$

Die gesuchte Spannung U kann jetzt beispielsweise mit einen Maschenumlauf über U_0 , R_1 und U berechnet werden.

$$U = U_0 - R_1 \cdot I = 10 \text{ V} - 20 \Omega \cdot 80 \text{ mA} = 8.4 \text{ V}$$

Lösungsvariante 2: Eine Lösung ist auch mit dem Überlagerungssatz möglich. Ich führe das durch, indem ich zunächst die Stromquelle und dann im zweiten Teil die Spannungsquelle außer Betrieb nehme.

Nur mit Spannungsquelle Will man die Stromquelle außer Betrieb nehmen, dann muss sie ersatzlos entfernt werden. Übrig bleibt die Reihenschaltung R_1/R_2 in der ein Strom I fließt.

$$I = \frac{U_0}{R_{ges}} = \frac{U_0}{R_1 + R_2} = \frac{10 \text{ V}}{20 \Omega + 30 \Omega} = 0.2 \text{ A}$$

Damit kann der erste Anteil U_1 an der gesuchten Spannung U bestimmt werden:

$$U_1 = R_2 \cdot I = 30 \,\Omega \cdot 0.2 \,A = 6 \,V$$

Nur mit Stromquelle Um die Spannungsquelle außer Betrieb zu nehmen muss sie durch einen Kurzschluss ersetzt werden. Dann ergibt sich eine Schaltung, in der die Stromquelle an eine Parallelschaltung aus R_1 und R_2 angeschlossen ist. Ich berechne den Ersatzwiderstand der Parallelschaltung:

$$R_P = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{20 \,\Omega \cdot 30 \,\Omega}{20 \,\Omega + 30 \,\Omega} = 12 \,\Omega$$

Mit diesen Werten kann der zweite Anteil U_2 an der gesuchten Spannung U bestimmt werden:

$$U_2 = R_P \cdot I_0 = 12 \Omega \cdot 0.2 A = 2.4 V$$

Zusammenführung Beide Spannungsanteile können nach dem Überlagerungssatz zur Gesamtspannung addiert werden:

$$U = U_1 + U_2 = 6 V + 2.4 V = 8.4 V$$

5.1.3 Aufgabe 6

Ersetzen Sie die Schaltung durch eine Spannungsquelle mit Innenwiderstand!

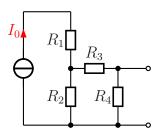
 $I_0 = 400 \,\mathrm{mA}$

 $R_1 = 900 \,\Omega$

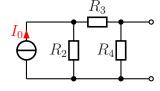
 $R_2 = 500 \,\Omega$

 $R_3 = 300 \,\Omega$

 $R_4 = 800 \,\Omega$

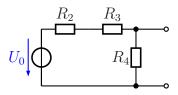


Lösung: Der Widerstand R_1 , der in Reihe zur Stromquelle geschaltet ist, hat auf den Rest der Schaltung keinerlei Einfluss, da er zur Stromquelle **in Reihe** geschaltet ist. Daher kann er für die weitere Betrachtung weggelassen werden. **Begründung:** Die ideale Stromquelle hat einen unendlich großen Innenwiderstand. Da bewirken ein paar Ohm (oder auch Kiloohm) in Reihe keine Veränderung.



Als nächstes kann die Stromquelle mit dem Innenwiderstand R_2 in eine Spannungsquelle mit Innenwiderstand R_2 umgewandelt werden.

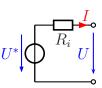
$$U_0 = R_2 \cdot I_0 = 500 \,\Omega \cdot 400 \,\mathrm{mA} = 200 \,\mathrm{V}$$



Der Widerstand R_2 bleibt erhalten.

Nun kann die Schaltung – die ja eine Spannungsteilerschaltung darstellt – in die gesuchte Spannungsquelle mit Innenwiderstand umgerechnet werden.

Der Innenwiderstand R_i ist die Parallelschaltung der beiden Teilwiderstände $(R_2 + R_3)$ einerseits und R_4 andererseits.



$$R_i = \frac{(R_2 + R_3) \cdot R_4}{(R_2 + R_3) + R_4} = \frac{(500 \,\Omega + 300 \,\Omega) \cdot 800 \,\Omega}{(500 \,\Omega + 300 \,\Omega) + 800 \,\Omega} = 400 \,\Omega$$

Die Ersatzspannung U^* ist die Leerlaufspannung des Spannungsteilers.

$$U^* = \frac{U_0 \cdot R_4}{(R_2 + R_3) + R_4} = \frac{200 \,\text{V} \cdot 800 \,\Omega}{(500 \,\Omega + 300 \,\Omega) + 800 \,\Omega} = 100 \,\text{V}$$

5.1.4 Aufgabe 7

Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung! Verwenden Sie dabei dort, wo es sinnvoll ist, eine geeignete Ersatzschaltung!

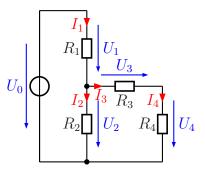
$$U_0 = 20 \text{ V}$$

$$R_1 = 9 \text{ k}\Omega$$

$$R_2 = 1 \text{ k}\Omega$$

$$R_3 = 1.1 \text{ k}\Omega$$

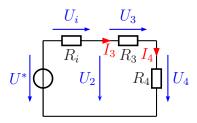
$$R_4 = 3 \text{ k}\Omega$$



Lösung: Es erscheint zweckmäßig, zunächst den Spannungsteiler R_1/R_2 in eine Spannungsquelle mit Innenwiderstand umzurechnen.

$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{9 \,\mathrm{k}\Omega \cdot 1 \,\mathrm{k}\Omega}{9 \,\mathrm{k}\Omega + 1 \,\mathrm{k}\Omega} = 900 \,\Omega$$

$$U^* = \frac{U_0 \cdot R_2}{R_1 + R_2} = \frac{20 \,\mathrm{V} \cdot 1 \,\mathrm{k}\Omega}{9 \,\mathrm{k}\Omega + 1 \,\mathrm{k}\Omega} = 2 \,\mathrm{V}$$



Der Strom $I_3 = I_4$ kann mit Hilfe des Ohmschen Gesetztes aus U^* und der Reihenschaltung $R_i/R_3/R_4$ bestimmt werden.

$$\begin{split} I_3 &= I_4 = \frac{U^*}{R_i + R_3 + R_4} = \frac{2\,\mathrm{V}}{900\,\Omega + 1.1\,\mathrm{k}\Omega + 3\,\mathrm{k}\Omega} = 0.4\,\mathrm{mA} \\ U_4 &= R_4 \cdot I_4 = 3\,\mathrm{k}\Omega \cdot 0.4\,\mathrm{mA} = 1.2\,\mathrm{V} \\ U_3 &= R_3 \cdot I_3 = 1.1\,\mathrm{k}\Omega \cdot 0.4\,\mathrm{mA} = 0.44\,\mathrm{V} \\ U_2 &= U_3 + U_4 = 0.44\,\mathrm{V} + 1.2\,\mathrm{V} = 1.64\,\mathrm{V} \end{split}$$

Damit sind alle Werte bestimmt, die die Ersatzschaltung hergibt. Wir steigen um auf die Originalschaltung.

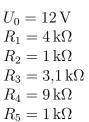
$$I_2 = \frac{U_2}{R_2} = \frac{1,64 \text{ V}}{1 \text{ k}\Omega} = 1,64 \text{ mA}$$

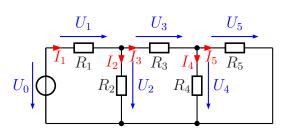
$$U_1 = U_0 - U_2 = 20 \text{ V} - 1,64 \text{ V} = 18,36 \text{ V}$$

$$I_1 = \frac{U_1}{R_1} = \frac{18,36 \text{ V}}{9 \text{ k}\Omega} = 2,04 \text{ mA}$$

5.1.5 Aufgabe 8

Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung! Verwenden Sie dabei dort, wo es sinnvoll ist, eine geeignete Ersatzschaltung!





Lösung: Zunächst wandle ich den Spannungsteiler (bestehend aus U_0 , R_1 und R_2) in eine Spannungsquelle mit Innenwiderstand um.

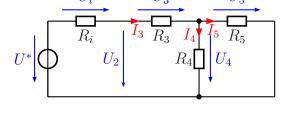
$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{4 \,\mathrm{k}\Omega \cdot 1 \,\mathrm{k}\Omega}{4 \,\mathrm{k}\Omega + 1 \,\mathrm{k}\Omega} = 800 \,\Omega$$

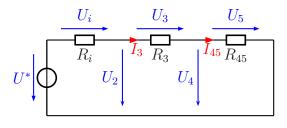
$$U^* = \frac{U_0 \cdot R_2}{R_1 + R_2} = \frac{12 \,\text{V} \cdot 1 \,\text{k}\Omega}{4 \,\text{k}\Omega + 1 \,\text{k}\Omega} = 2,4 \,\text{V}$$

Nun kann noch die Parallelschaltung aus R_4 und R_5 zu R_{45} zusammengefasst werden.

$$R_{45} = \frac{R_4 \cdot R_5}{R_4 + R_5} = \frac{9 \,\mathrm{k}\Omega \cdot 1 \,\mathrm{k}\Omega}{9 \,\mathrm{k}\Omega + 1 \,\mathrm{k}\Omega} = 900 \,\Omega$$

Mit der Reihenschaltung $R_i/R_3/R_{45}$ und der Spannung U^* kann der Strom I_3 bestimmt werden.





$$I_3 = I_{45} = \frac{U^*}{R_i + R_3 + R_{45}} = \frac{2,4 \text{ V}}{800 \Omega + 3,1 \text{ k}\Omega + 900 \Omega} = 0,5 \text{ mA}$$

$$U_4 = U_5 = R_{45} \cdot I_{45} = 900 \Omega \cdot 0,5 \text{ mA} = 0,45 \text{ V}$$

$$U_3 = R_3 \cdot I_3 = 3,1 \text{ k}\Omega \cdot 0,5 \text{ mA} = 1,55 \text{ V}$$

$$U_2 = U_3 + U_4 = 1,55 \text{ V} + 0,45 \text{ V} = 2 \text{ V}$$

Zur Berechnung der weiteren Ströme und Spannungen müssen wir auf die ursprüngliche Schaltung zurückgreifen.

$$I_4 = \frac{U_4}{R_4} = \frac{0.45 \text{ V}}{9 \text{ k}\Omega} = 50 \,\mu\text{A}$$

$$I_5 = \frac{U_5}{R_5} = \frac{0.45 \text{ V}}{1 \text{ k}\Omega} = 0.45 \,\text{mA}$$

$$I_2 = \frac{U_2}{R_2} = \frac{2 \text{ V}}{1 \text{ k}\Omega} = 2 \,\text{mA}$$

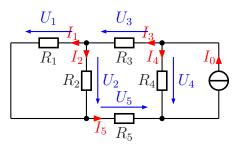
$$I_1 = I_2 + I_3 = 2 \,\text{mA} + 0.5 \,\text{mA} = 2.5 \,\text{mA}$$

$$U_1 = R_1 \cdot I_1 = 4 \,\text{k}\Omega \cdot 2.5 \,\text{mA} = 10 \,\text{V}$$

5.1.6 Aufgabe 9

Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

$$\begin{split} I_0 &= 10 \, \mathrm{mA} \\ R_1 &= 4 \, \mathrm{k}\Omega \\ R_2 &= 6 \, \mathrm{k}\Omega \\ R_3 &= 9.6 \, \mathrm{k}\Omega \\ R_4 &= 5 \, \mathrm{k}\Omega \\ R_5 &= 8 \, \mathrm{k}\Omega \end{split}$$



Lösung: Zunächst kann die Stromquelle I_0 mit dem Widerstand R_4 in eine Spannungsquelle mit Innenwiderstand umgewandelt werden. Dabei bleibt R_4 unverändert der Innenwiderstand.

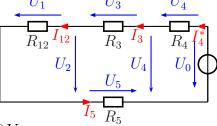
$$U_0 = R_4 \cdot I_0 = 5 \,\mathrm{k}\Omega \cdot 10 \,\mathrm{mA} = 50 \,\mathrm{V}$$

Dann können die beiden Widerstände R_1 und R_2 zu einem Widerstand R_{12} zusammengefasst werden.

$$U_1$$
 U_3 U_4^*
 R_1 I_2 R_3 I_3 R_4 I_4^*
 R_2 U_2 U_4 U_0 U_5

$$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{4 \,\mathrm{k}\Omega \cdot 6 \,\mathrm{k}\Omega}{4 \,\mathrm{k}\Omega + 6 \,\mathrm{k}\Omega} = 2.4 \,\mathrm{k}\Omega$$

Hiermit kann nun der Gesamtstrom $I_3 = I_5$ über U_0 und die Widerstandssumme aus R_4 , R_3 , R_{12} und R_5 bestimmt werden.



$$I_{3} = I_{12} = I_{5} = \frac{U_{0}}{R_{4} + R_{3} + R_{12} + R_{5}} = \frac{50 \text{ V}}{5 \text{ k}\Omega + 9.6 \text{ k}\Omega + 2.4 \text{ k}\Omega + 8 \text{ k}\Omega} = 2 \text{ mA}$$

$$U_{3} = R_{3} \cdot I_{3} = 9.6 \text{ k}\Omega \cdot 2 \text{ mA} = 19.2 \text{ V}$$

$$U_{5} = R_{5} \cdot I_{5} = 8 \text{ k}\Omega \cdot 2 \text{ mA} = 16 \text{ V}$$

$$U_{1} = U_{2} = R_{12} \cdot I_{12} = 2.4 \text{ k}\Omega \cdot 2 \text{ mA} = 4.8 \text{ V}$$

$$U_{4} = U_{3} + U_{2} + U_{5} = 19.2 \text{ V} + 4.8 \text{ V} + 16 \text{ V} = 40 \text{ V}$$

Die Berechnung der restlichen Stöme findet nun in der Ursprungsschaltung statt.

$$I_{1} = \frac{U_{1}}{R_{1}} = \frac{4.8 \text{ V}}{4 \text{ k}\Omega} = 1.2 \text{ mA}$$

$$I_{2} = \frac{U_{2}}{R_{2}} = \frac{4.8 \text{ V}}{6 \text{ k}\Omega} = 0.8 \text{ mA}$$

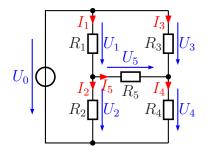
$$I_{4} = \frac{U_{4}}{R_{4}} = \frac{40 \text{ V}}{5 \text{ k}\Omega} = 8 \text{ mA}$$

5.1.7 Aufgabe 10

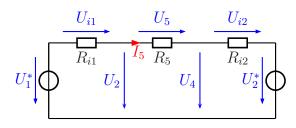
Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

Gegeben sind folgende Werte:

$$R_1 = 8 \text{ k}\Omega$$
 $R_2 = 12 \text{ k}\Omega$
 $R_3 = 9 \text{ k}\Omega$ $R_4 = 6 \text{ k}\Omega$
 $R_5 = 6.6 \text{ k}\Omega$ $U_0 = 75 \text{ V}$



Lösung: Hier können **beide** Spannungsteiler (zum einen R_1/R_2 , zum anderen R_3/R_4) in jeweils eine Spannungsquelle mit Innenwiderstand umgerechnet werden. Dabei spielt es keine Rolle, dass beide Spannungsteiler durch die gleiche Quelle (U_0) gespeist werden. Führt man das durch, erhält man das nebenstehende Ersatzschaltbild. Hierbei ist



zu beachten, dass hierin nur im Mittelteil – also um R_5 herum – noch die Original-Spannungen und -Ströme auftreten. Dies sind die eingezeichneten Spannungen U_2 , U_5 und U_4 sowie der Strom I_5 .

Beginnen wir mit der Umrechnung des linken Spannungsteilers. Der Innenwiderstand R_{i1} stellt die Parallelschaltung $R_1 \parallel R_2$ dar.

$$R_{i1} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{8 \,\mathrm{k}\Omega \cdot 12 \,\mathrm{k}\Omega}{8 \,\mathrm{k}\Omega + 12 \,\mathrm{k}\Omega} = 4.8 \,\mathrm{k}\Omega$$

Sinngemäß das gleiche gilt auch für den rechten Spannungsteiler mit $R_{i2} = R_3 \parallel R_4$.

$$R_{i2} = \frac{R_3 \cdot R_4}{R_4 + R_4} = \frac{9 \,\mathrm{k}\Omega \cdot 6 \,\mathrm{k}\Omega}{9 \,\mathrm{k}\Omega + 6 \,\mathrm{k}\Omega} = 3.6 \,\mathrm{k}\Omega$$

Die Ersatzspannung U_1^* ist die Leerlaufspannung des linken Spannungsteilers R_1/R_2 .

$$U_1^* = \frac{R_2 \cdot U_0}{R_1 + R_2} = \frac{12 \,\mathrm{k}\Omega \cdot 75 \,\mathrm{V}}{8 \,\mathrm{k}\Omega + 12 \,\mathrm{k}\Omega} = 45 \,\mathrm{V}$$

Am rechten Spannungsteiler R_3/R_4 gilt das gleiche mit U_2^* .

$$U_2^* = \frac{R_4 \cdot U_0}{R_3 + R_4} = \frac{6 \,\mathrm{k}\Omega \cdot 75 \,\mathrm{V}}{9 \,\mathrm{k}\Omega + 6 \,\mathrm{k}\Omega} = 30 \,\mathrm{V}$$

Als nächstes können alle Widerstände zu einem Ersatzwiderstand R_E zusammengefasst werden. Sie sind in Reihe geschaltet.

$$R_E = R_{i1} + R_5 + R_{i2} = 4.8 \,\mathrm{k}\Omega + 6.6 \,\mathrm{k}\Omega + 3.6 \,\mathrm{k}\Omega = 15 \,\mathrm{k}\Omega$$

An diesem Widerstand liegt nach der Kirchhoffschen Maschenregel die Spannungsdifferenz $U_1^* - U_2^*$ an. Damit kann mit Hilfe des Ohmschen Gesetzes der Strom I_5 berchnet werden.

$$I_5 = \frac{U_1^* - U_2^*}{R_E} = \frac{45 \text{ V} - 30 \text{ V}}{15 \text{ k}\Omega} = 1 \text{ mA}$$

Hiermit kann nun sofort die Spannung U_5 berechnet werden.

$$U_5 = R_5 \cdot I_5 = 6.6 \,\mathrm{k}\Omega \cdot 1 \,\mathrm{mA} = 6.6 \,\mathrm{V}$$

Der Strom I_5 fließt natürlich auch in R_{i1} und R_{i2} . Damit können die Hilfsspannungen U_{i1} und U_{i2} berechnet werden.

$$U_{i1} = R_{i1} \cdot I_5 = 4.8 \,\mathrm{k}\Omega \cdot 1 \,\mathrm{mA} = 4.8 \,\mathrm{V}$$

$$U_{i2} = R_{i2} \cdot I_5 = 3.6 \,\mathrm{k}\Omega \cdot 1 \,\mathrm{mA} = 3.6 \,\mathrm{V}$$

Mithilfe eines Maschenumlaufs an der Masche U_{i1} – U_2 – U_1^* kann die Spannung U_2 bestimmt werden.

$$U_{i1} + U_2 - U_1^* = 0 \qquad | + U_1^* - U_{i1}$$

$$U_2 = U_1^* - U_{i1}$$

$$= 45 \text{ V} - 4.8 \text{ V}$$

$$U_2 = 40.2 \text{ V}$$

Mit dem Ohmschen Gesetz erhalten wir in der Originalschaltung aus U_2 und R_2 den Strom I_2 .

$$I_2 = \frac{U_2}{R_2} = \frac{40.2 \text{ V}}{12 \text{ k}\Omega} = 3.35 \text{ mA}$$

Entsprechend wird die Spannung U_4 in der Masche $U_{i2} - U_2^* - U_4$ berechnet.

$$U_{i2} + U_{2}^{*} - U_{4} = 0 \qquad | + U_{4}$$

$$U_{i2} + U_{2}^{*} = U_{4}$$

$$U_{4} = 3,6 \text{ V} + 30 \text{ V}$$

$$U_{4} = 33,6 \text{ V}$$

Mit dem Ohmschen Gesetz erhalten wir in der Originalschaltung aus U_4 und R_4 den Strom I_4 .

$$I_4 = \frac{U_4}{R_4} = \frac{33,6 \text{ V}}{6 \text{ k}\Omega} = 5,6 \text{ mA}$$

Am linken Knoten, wo sich R_1 , R_2 und R_5 treffen, kann man mit der Kirchhoffschen Knotenregel I_1 bestimmen.

$$I_1 = I_2 + I_5 = 3.35 \,\mathrm{mA} + 1 \,\mathrm{mA} = 4.35 \,\mathrm{mA}$$

Mit dem Ohmschen Gesetz an \mathbb{R}_1 wird die Spannung \mathbb{U}_1 bestimmt.

$$U_1 = R_1 \cdot I_1 = 8 \,\mathrm{k}\Omega \cdot 4{,}35 \,\mathrm{mA} = 34{,}8 \,\mathrm{V}$$

Am rechten Knoten, wo sich R_3 , R_4 und R_5 treffen, kann man mit der Kirchhoffschen Knotenregel I_3 bestimmen.

$$I_3 = I_4 - I_5 = 5.6 \,\mathrm{mA} - 1 \,\mathrm{mA} = 4.6 \,\mathrm{mA}$$

Mit dem Ohmschen Gesetz an \mathbb{R}_3 wird die Spannung \mathbb{U}_3 bestimmt.

$$U_3 = R_3 \cdot I_3 = 9 \,\mathrm{k}\Omega \cdot 4.6 \,\mathrm{mA} = 41.4 \,\mathrm{V}$$

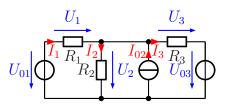
$I_1 = 4{,}35\mathrm{mA}$	$I_2 = 3{,}35\mathrm{mA}$	$I_3 = 4.6 \mathrm{mA}$	$I_4 = 5.6 \mathrm{mA}$	$I_5 = 1 \mathrm{mA}$
$U_1 = 34.8 \mathrm{V}$	$U_2 = 40,2 \mathrm{V}$	$U_3 = 41,4 \mathrm{V}$	$U_4 = 33.6 \mathrm{V}$	$U_5 = 6.6 \mathrm{V}$

5.1.8 Aufgabe 11

Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

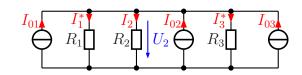
$$U_{01} = 12 \text{ V}$$

 $I_{02} = 30 \text{ mA}$
 $U_{03} = 18 \text{ V}$
 $R_1 = 200 \Omega$
 $R_2 = 300 \Omega$
 $R_3 = 200 \Omega$



Lösung: Hier bietet es sich an, die beiden Spannungsquellen in Stromquellen umzuwandeln. Dann sind nämlich alle Widerstände und alle Stromquellen miteinander parallelgeschaltet.

$$I_{01} = \frac{U_{01}}{R_1} = \frac{12 \,\text{V}}{200 \,\Omega} = 60 \,\text{mA}$$



$$I_{03} = \frac{U_{03}}{R_3} = \frac{18 \text{ V}}{200 \Omega} = 90 \text{ mA}$$

Jetzt können die drei Stromquellen zu einer Gesamtstromquelle I_{ges} und die drei Widerstände zu einem Gesamtwiderstand R_{ges} zusammengefasst werden.

$$I_{ges} = I_{01} + I_{02} + I_{03} = 60 \,\mathrm{mA} + 30 \,\mathrm{mA} + 90 \,\mathrm{mA} = 180 \,\mathrm{mA}$$

$$\begin{array}{lcl} \frac{1}{R_{ges}} & = & \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \\ \\ \frac{1}{R_{ges}} & = & \frac{1}{200 \, \Omega} + \frac{1}{300 \, \Omega} + \frac{1}{200 \, \Omega} \\ \\ R_{ges} & = & 75 \, \Omega \end{array}$$

Hiermit können U_2 und I_2 bestimmt werden.

$$U_2 = R_{ges} \cdot I_{ges} = 75 \,\Omega \cdot 180 \,\text{mA} = 13,5 \,\text{V}$$

$$I_2 = \frac{U_2}{R_2} = \frac{13,5 \,\text{V}}{300 \,\Omega} = 45 \,\text{mA}$$

Für die weiteren Berechnungen müssen wir wieder in die Originalschaltung zurückgehen.

$$U_1 = U_{01} - U_2 = 12 \,\mathrm{V} - 13,5 \,\mathrm{V} = -1,5 \,\mathrm{V}$$

$$I_1 = \frac{U_1}{R_1} = \frac{-1.5 \text{ V}}{200 \Omega} = -7.5 \text{ mA}$$

$$U_3 = U_2 - U_{03} = 13.5 \text{ V} - 18 \text{ V} = -4.5 \text{ V}$$

$$I_3 = \frac{U_3}{R_3} = \frac{-4.5 \text{ V}}{200 \Omega} = -22.5 \text{ mA}$$

$U_1 = -1.5 \mathrm{V}$	$U_2 = 13.5 \mathrm{V}$	$U_3 = -4.5 \mathrm{V}$
$I_1 = -7.5 \mathrm{mA}$	$I_2 = 45 \mathrm{mA}$	$I_3 = -22,5 \mathrm{mA}$

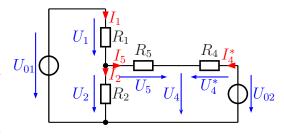
5.1.9 Aufgabe 12

Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

$$\begin{split} U_{01} &= 15 \, \mathrm{V} \\ I_{02} &= 5 \, \mathrm{mA} \\ R_1 &= 1,6 \, \mathrm{k}\Omega \\ R_2 &= 2,4 \, \mathrm{k}\Omega \\ R_3 &= 1,8 \, \mathrm{k}\Omega \\ R_4 &= 1,12 \, \mathrm{k}\Omega \\ R_5 &= 1,32 \, \mathrm{k}\Omega \end{split}$$



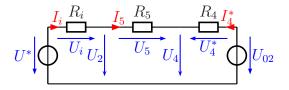
Lösung: Die Stromquelle kann in eine Spannungsquelle mit Innenwiderstand umgewandelt werden. Dabei hat der Widerstand R_3 keine Funktion; der Strom I_{02} fließt ungehindert durch ihn hindurch, unabhängig von seinem Widerstandswert. Damit ist nur R_4 der Innenwiderstand der Stromquelle und taucht somit als einziger Widerstand in dem umgewandelten Schaltungsteil auf.



$$U_{02} = R_4 \cdot I_{02} = 1{,}12 \,\mathrm{k}\Omega \cdot 5 \,\mathrm{mA} = 5{,}6 \,\mathrm{V}$$

Als nächstes kann der Spannungsteiler R_1/R_2 mit U_{01} in eine Spannungsquelle U^* mit Innenwiderstand R_i umgewandelt werden.

$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{1.6 \,\mathrm{k}\Omega \cdot 2.4 \,\mathrm{k}\Omega}{1.6 \,\mathrm{k}\Omega + 2.4 \,\mathrm{k}\Omega} = 960 \,\Omega$$



$$U^* = \frac{U_{01} \cdot R_2}{R_1 + R_2} = \frac{15 \,\text{V} \cdot 2.4 \,\Omega}{1.6 \,\Omega + 2.4 \,\Omega} = 9 \,\text{V}$$

Mit diesen Werten können nun I_5 sowie die Spannungen um R_5 herum berechnet werden.

$$I_5 = \frac{U^* - U_{02}}{R_i + R_5 + R_4} = \frac{9 \text{ V} - 5.6 \text{ V}}{960 \Omega + 1.32 \text{ k}\Omega + 1.12 \text{ k}\Omega} = \frac{3.4 \text{ V}}{3.4 \text{ k}\Omega} = 1 \text{ mA}$$

$$U_5 = R_5 \cdot I_5 = 1.32 \text{ k}\Omega \cdot 1 \text{ mA} = 1.32 \text{ V}$$

$$U_i = R_i \cdot I_5 = 960 \Omega \cdot 1 \text{ mA} = 0.96 \text{ V}$$

$$U_2 = U^* - U_i = 9 \text{ V} - 0.96 \text{ V} = 8.04 \text{ V}$$

$$U_4 = U_2 - U_5 = 8.04 \text{ V} - 1.32 \text{ V} = 6.72 \text{ V}$$

Zur Berechnung der übrigen Werte muss jetzt wieder auf die Originalschaltung zurückgegriffen werden, da die Werte in der Ersatzschaltung nicht vorkommen.

$$I_2 = \frac{U_2}{R_2} = \frac{8,04 \text{ V}}{2,4 \text{ k}\Omega} = 3,35 \text{ mA}$$

$$I_1 = I_2 + I_5 = 3,35 \text{ mA} + 1 \text{ mA} = 4,35 \text{ mA}$$

$$U_1 = R_1 \cdot I_1 = 1,6 \text{ k}\Omega \cdot 4,35 \text{ mA} = 6,96 \text{ V}$$

$$I_4 = \frac{U_4}{R_4} = \frac{6,72 \text{ V}}{1,12 \text{ k}\Omega} = 6 \text{ mA}$$

$$I_3 = I_{02} = 5 \text{ mA}$$

$$U_3 = R_3 \cdot I_3 = 1,8 \text{ k}\Omega \cdot 5 \text{ mA} = 9 \text{ V}$$

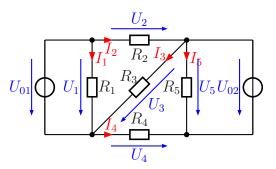
$U_1 = 6,96 \mathrm{V}$	$U_2 = 8,04 \mathrm{V}$	$U_3 = 9 \mathrm{V}$	$U_4 = 6,72\mathrm{V}$	$U_5 = 1,32 \mathrm{V}$
$I_1 = 4{,}35\mathrm{mA}$	$I_2 = 3{,}35\mathrm{mA}$	$I_3 = 5 \mathrm{mA}$	$I_4 = 6 \mathrm{mA}$	$I_5 = 1 \mathrm{mA}$

5.1.10 Aufgabe 13

Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

$$U_{01} = 16 \text{ V}$$

 $U_{02} = 24 \text{ V}$
 $R_1 = 400 \Omega$
 $R_2 = 200 \Omega$
 $R_3 = 300 \Omega$
 $R_4 = 200 \Omega$
 $R_5 = 120 \Omega$

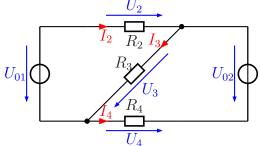


Lösung: Betrachten wir zunächst den Widerstand R_1 . Er ist direkt an U_{01} angeschlossen. Der Strom, der hindurchfließt, hat auf keine anderen Ströme einen Einfluss. Er kann also vorweg unabhängig berechnet werden. Das gleiche gilt auch für R_5 an U_{02} .

$$I_1 = \frac{U_{01}}{R_1} = \frac{16 \text{ V}}{400 \Omega} = 40 \text{ mA}$$

$$I_5 = \frac{U_{02}}{R_5} = \frac{24 \text{ V}}{120 \Omega} = 200 \text{ mA}$$

Für die Berechnung der weiteren Spannungen und Ströme können nun R_1 und R_5 weggelassen werden. Übrig bleiben nur R_2 , R_3 und R_4 .



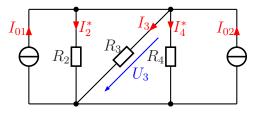
 U_{01} mit R_2 kann dann als Spannungsquelle mit Innenwiderstand betrachtet werden. Das gleiche gilt auch für U_{02} mit R_4 .

Man kann nun diese beiden Spannungsquellen in Stromquellen umwandeln, dann sind alle Widerstände parallelgeschaltet, die Berechnung wird einfach.

Wir berechnen die Werte für I_{01} und I_{02} .

$$I_{01} = \frac{U_{01}}{R_2} = \frac{16 \text{ V}}{200 \Omega} = 80 \text{ mA}$$

$$I_{02} = \frac{U_{02}}{R_4} = \frac{24 \,\mathrm{V}}{200 \,\Omega} = 120 \,\mathrm{mA}$$



In dieser Schaltung werden die drei Widerstände zu R_{qes} zusammengefasst. Entsprechend werden auch die beiden Ströme I_{01}

und I_{02} zu I_{ges} zusammengefasst.

$$\begin{split} \frac{1}{R_{ges}} &= \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} \\ &= \frac{1}{200\,\Omega} + \frac{1}{300\,\Omega} + \frac{1}{200\,\Omega} \\ R_{ges} &= 75\,\Omega \end{split}$$

$$I_{ges} = I_{01} + I_{02} = 80\,\text{mA} + 120\,\text{mA} = 200\,\text{mA}$$

$$U_3 = R_{ges} \cdot I_{ges} = 75\,\Omega \cdot 200\,\text{mA} = 15\,\text{V}$$

$$I_3 = \frac{U_3}{R_3} = \frac{15\,\text{V}}{300\,\Omega} = 50\,\text{mA}$$

Für die Berechnung der weiteren Größen müssen wir wieder in die Originalschaltung gehen.

$$U_2 = U_{01} - U_3 = 16 \text{ V} - 15 \text{ V} = 1 \text{ V}$$

$$I_2 = \frac{U_2}{R_2} = \frac{1 \text{ V}}{200 \Omega} = 5 \text{ mA}$$

$$U_4 = U_{02} - U_3 = 24 \text{ V} - 15 \text{ V} = 9 \text{ V}$$

$$I_4 = \frac{U_4}{R_4} = \frac{9 \text{ V}}{200 \Omega} = 45 \text{ mA}$$

	$U_1 = 16 \mathrm{V}$	$U_2 = 1 \mathrm{V}$	$U_3 = 15 \mathrm{V}$	$U_4 = 9 \mathrm{V}$	$U_5 = 24 \mathrm{V}$
I_1 :	$=40\mathrm{mA}$	$I_2 = 5 \mathrm{mA}$	$I_3 = 50 \mathrm{mA}$	$I_4 = 45 \mathrm{mA}$	$I_5 = 200 \mathrm{mA}$

5.1.11 Aufgabe 14

Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

$$U_{01} = 10 \text{ V}$$

$$U_{02} = 5 \text{ V}$$

$$R_1 = 100 \Omega$$

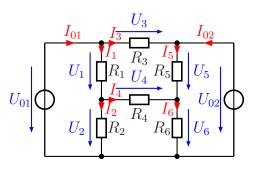
$$R_2 = 400 \Omega$$

$$R_3 = 200 \Omega$$

$$R_4 = 44 \Omega$$

$$R_5 = 80 \Omega$$

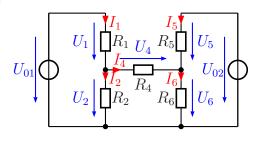
$$R_6 = 20 \Omega$$



Lösung: Der Widerstand R_3 ist zwischen die beiden Spannungsquellen geschaltet. Das bedeutet, dass die Spannung U_3 und der Strom I_3 sofort bestimmt werden kann.

$$U_3 = U_{01} - U_{02} = 10 \text{ V} - 5 \text{ V} = 5 \text{ V}$$

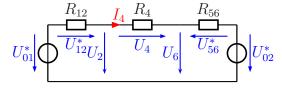
$$I_3 = \frac{U_3}{R_3} = \frac{5 \text{ V}}{200 \Omega} = 25 \text{ mA}$$



Weiterhin hat der Strom I_3 keinen Einfluss auf den Rest der Schaltung, so dass R_3 für die weiteren Berechnungen entfernt werden kann.

Jetzt ist es möglich und auch sinnvoll, den Spannungsteiler R_1/R_2 mit der Spannung U_{01} in eine Spannungsquelle U_{01}^* mit dem Innenwiderstand R_{12} umzuwandeln.

$$U_{01}^* = \frac{U_{01} \cdot R_2}{R_1 + R_2} = \frac{10 \,\text{V} \cdot 400 \,\Omega}{100 \,\Omega + 400 \,\Omega} = 8 \,\text{V}$$



$$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{100 \,\Omega \cdot 400 \,\Omega}{100 \,\Omega + 400 \,\Omega} = 80 \,\Omega$$

Genau das gleiche kann auch mit dem Spannungsteiler R_5/R_6 und der Spannungsquelle U_{02} gemacht werden. Wir erhalten die Spannung U_{02}^* und den Widerstand R_{56} .

$$U_{02}^* = \frac{U_{02} \cdot R_6}{R_5 + R_6} = \frac{5 \,\text{V} \cdot 20 \,\Omega}{80 \,\Omega + 20 \,\Omega} = 1 \,\text{V}$$

$$R_{56} = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{80 \,\Omega \cdot 20 \,\Omega}{80 \,\Omega + 20 \,\Omega} = 16 \,\Omega$$

$$\begin{split} I_4 &= \frac{U_{01}^* - U_{02}^*}{R_{12} + R_4 + R_{56}} = \frac{8 \, \mathrm{V} - 1 \, \mathrm{V}}{80 \, \Omega + 44 \, \Omega + 16 \, \Omega} = 50 \, \mathrm{mA} \\ U_4 &= R_4 \cdot I_4 = 44 \, \Omega \cdot 50 \, \mathrm{mA} = 2,2 \, \mathrm{V} \\ U_{12}^* &= R_{12} \cdot I_4 = 80 \, \Omega \cdot 50 \, \mathrm{mA} = 4 \, \mathrm{V} \\ U_2 &= U_{01}^* - U_{12}^* = 8 \, \mathrm{V} - 4 \, \mathrm{V} = 4 \, \mathrm{V} \\ U_6 &= U_2 - U_4 = 4 \, \mathrm{V} - 2,2 \, \mathrm{V} = 1,8 \, \mathrm{V} \end{split}$$

Für die restlichen Werte müssen wir zurück in die Originalschaltung gehen.

$$I_{2} = \frac{U_{2}}{R_{2}} = \frac{4 \text{ V}}{400 \Omega} = 10 \text{ mA}$$

$$I_{6} = \frac{U_{6}}{R_{6}} = \frac{1,8 \text{ V}}{20 \Omega} = 90 \text{ mA}$$

$$U_{1} = U_{01} - U_{2} = 10 \text{ V} - 4 \text{ V} = 6 \text{ V}$$

$$I_{1} = \frac{U_{1}}{R_{1}} = \frac{6 \text{ V}}{100 \Omega} = 60 \text{ mA}$$

$$U_{5} = U_{02} - U_{6} = 5 \text{ V} - 1,8 \text{ V} = 3,2 \text{ V}$$

$$I_{5} = \frac{U_{5}}{R_{5}} = \frac{3,2 \text{ V}}{80 \Omega} = 40 \text{ mA}$$

$$I_{01} = I_{1} + I_{3} = 60 \text{ mA} + 25 \text{ mA} = 85 \text{ mA}$$

$$I_{02} = I_{5} - I_{3} = 40 \text{ mA} - 25 \text{ mA} = 15 \text{ mA}$$

6 Das Maschenstromverfahren

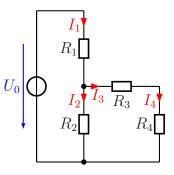
6.1 Übungsaufgaben zum Maschenstromverfahren

Die Lösungen sind mit Lösungsweg dargestellt. Lediglich bei den letzten Aufgaben sind (zunächst) nur die Ergebnisse angegeben.

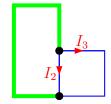
6.1.1 Aufgabe 15

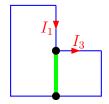
Bestimmen Sie alle Ströme in nebenstehender Schaltung! Verwenden Sie dazu das Maschenstromverfahren. Legen Sie zunächst einen geeigneten Vollständigen Baum fest, bevor Sie mit der Rechnung beginnen.

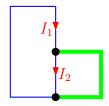
$$\begin{split} U_0 &= 20 \, \mathrm{V} \\ R_1 &= 5 \, \mathrm{k} \Omega \\ R_2 &= 5 \, \mathrm{k} \Omega \\ R_3 &= 1,5 \, \mathrm{k} \Omega \\ R_4 &= 1 \, \mathrm{k} \Omega \end{split}$$



Lösung:

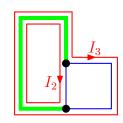






Obenstehend sind drei Möglichkeiten für einen Vollständigen Baum dargestellt. Je nachdem, wie der Baum gelegt wurde, ergeben sich unterschiedliche Maschenströme. Nur die Verbindungszweige bilden die Maschenströme! Im linken Fall sind das I_2 und I_3 , im mittleren Fall I_1 und I_3 und im rechts dargestellten Fall I_1 und I_2 .

Ich verwende für die Lösung den im linken Beispiel dargestellten Vollständigen Baum. Damit ergeben sich die nebenstehend dargestellten Maschenströme I_2 und I_3 . Da die Ströme I_3 und I_4 gleich sind, kann direkt I_4 durch I_3 ersetzt werden. In jedem Fall ist zu beachten, dass der jeweilige Maschenstrom seinen Rückweg nicht durch andere Verbindungszweige, sondern ausschließlich innerhalb des Baumes finden darf. Damit können die Maschengleichungen aufgestellt werden.



Dieses Gleichungssystem kann nun mit jedem beliebigen Lösungsverfahren gelöst werden. Ich multipliziere Gleichung (3) mit 2, um das Subtraktionsverfahren anwenden zu können.

Das Ergebnis wird in Gleichung (2) eingesetzt, um I_2 zu bestimmen.

$$\begin{array}{rclrcl} 10 \, \mathrm{k}\Omega \cdot I_2 + 5 \, \mathrm{k}\Omega \cdot I_3 & = & 20 \, \mathrm{V} \\ 10 \, \mathrm{k}\Omega \cdot I_2 + 5 \, \mathrm{k}\Omega \cdot 2 \, \mathrm{mA} & = & 20 \, \mathrm{V} \\ 10 \, \mathrm{k}\Omega \cdot I_2 + 10 \, \mathrm{V} & = & 20 \, \mathrm{V} & | -10 \, \mathrm{V} \\ 10 \, \mathrm{k}\Omega \cdot I_2 & = & 10 \, \mathrm{V} & | : 10 \, \mathrm{k}\Omega \\ I_2 & = & \frac{10 \, \mathrm{V}}{10 \, \mathrm{k}\Omega} \\ I_2 & = & 1 \, \mathrm{mA} \end{array}$$

Mit der Kirchhoffschen Maschenregel ergibt sich I_1 .

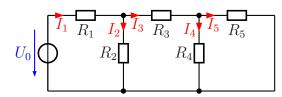
$$I_1 = I_2 + I_3 = 1 \,\text{mA} + 2 \,\text{mA} = 3 \,\text{mA}$$

Wegen der Reihenschaltung R_3/R_4 ist $I_4 = I_3 = 2 \,\mathrm{mA}$.

$$I_1 = 3 \,\text{mA}$$
 $I_2 = 1 \,\text{mA}$ $I_3 = 2 \,\text{mA}$ $I_4 = 2 \,\text{mA}$

6.1.2 Aufgabe 16

Bestimmen Sie alle Ströme in nebenstehender Schaltung! Verwenden Sie dazu das Maschenstromverfahren. Legen Sie zunächst einen geeigneten Vollständigen Baum fest, bevor Sie mit der Rechnung beginnen.



 $U_0 = 12 \, \text{V}$

 $R_1 = 4 \,\mathrm{k}\Omega$

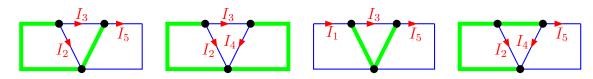
 $R_2 = 1 \,\mathrm{k}\Omega$

 $R_3 = 3.1 \,\mathrm{k}\Omega$

 $R_4 = 9 \,\mathrm{k}\Omega$

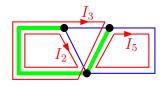
 $R_5 = 1 \,\mathrm{k}\Omega$

Lösung:



Hier sind vier mögliche Vollständige Bäume dargestellt. Hierbei ist zu beachten, dass die unteren Anschlüsse der Widerstände R_2 und R_4 scheinbar an verschiedenen Knoten angeschlossen sind. Tatsächlich ist jedoch eine leitende Verbindung dazwischen, so dass diese beiden Knoten zu einem einzigen zusammengefasst werden müssen. Jeder eingezeichnete Baum ist möglich, es sind auch alle sinnvoll. Je nachdem, wie der Baum gelegt wurde, ergeben sich unterschiedliche Maschenströme. Nur die Verbindungszweige bilden die Maschenströme! Im ersten Fall (links) sind das I_2 , I_3 und I_5 , im zweiten Fall I_2 , I_3 und I_4 , im dritten Fall I_1 , I_3 und I_5 und im vierten dargestellten Fall I_2 , I_5 und I_5 .

Willkürlich habe ich den linken Fall für die weitere Lösung verwendet. Dieser Baum wurde entsprechend der Faustregel durch die Spannungsquelle gelegt. Das wäre aber auch beim zweiten und vierten Beispielbaum der Fall. In jedem Fall ist zu beachten, dass der jeweilige Maschenstrom seinen Rückweg nicht durch andere Verbindungszweige, sondern ausschließlich innerhalb des Baumes finden darf. Damit können die Maschengleichungen aufgestellt werden.



Dieses Gleichungsssystem kann mit jedem beliebigen Verfahren gelöst werden. Zur Lösung verwende ich das Einsetzungsverfahren. Dazu stelle ich Gleichung (5) nach I_5 um und setze das Ergebnis in die anderen Gleichungen ein.

$$\begin{array}{rclcrcl} -9 \, \mathrm{k}\Omega \cdot I_3 + 10 \, \mathrm{k}\Omega \cdot I_5 & = & 0 & | + 9 \, \mathrm{k}\Omega \cdot I_3 \\ & 10 \, \mathrm{k}\Omega \cdot I_5 & = & 9 \, \mathrm{k}\Omega \cdot I_3 & | : 10 \, \mathrm{k}\Omega \\ & I_5 & = & 0.9 \cdot I_3 \end{array}$$

Da I_5 in Gleichung (2) nicht vorkommt, muss nur in Gleichung (3) eingesetzt werden.

$$\begin{array}{rcl} 4 \, \mathrm{k}\Omega \cdot I_2 + 16.1 \, \mathrm{k}\Omega \cdot I_3 - 9 \, \mathrm{k}\Omega \cdot I_5 & = & 12 \, \mathrm{V} \\ 4 \, \mathrm{k}\Omega \cdot I_2 + 16.1 \, \mathrm{k}\Omega \cdot I_3 - 9 \, \mathrm{k}\Omega \cdot 0.9 \cdot I_3 & = & 12 \, \mathrm{V} \\ 4 \, \mathrm{k}\Omega \cdot I_2 + 16.1 \, \mathrm{k}\Omega \cdot I_3 - 8.1 \, \mathrm{k}\Omega \cdot I_3 & = & 12 \, \mathrm{V} \\ 4 \, \mathrm{k}\Omega \cdot I_2 + 8 \, \mathrm{k}\Omega \cdot I_3 & = & 12 \, \mathrm{V} \end{array}$$

Jetzt sind noch zwei Gleichungen übrig.

Jetzt bietet sich das Subtraktionsverfahren an. Gleichung (3) wird dazu durch 2 dividiert.

Das Ergebnis wird in Gleichung (2) eingesetzt.

$$\begin{array}{rclcrcl} 5 & \mathrm{k}\Omega \cdot I_2 + 4 & \mathrm{k}\Omega \cdot I_3 & = & 12 \, \mathrm{V} \\ 5 & \mathrm{k}\Omega \cdot 2 & \mathrm{mA} + 4 & \mathrm{k}\Omega \cdot I_3 & = & 12 \, \mathrm{V} \\ & & 10 \, \mathrm{V} + 4 & \mathrm{k}\Omega \cdot I_3 & = & 12 \, \mathrm{V} & | -10 \, \mathrm{V} \\ & & 4 & \mathrm{k}\Omega \cdot I_3 & = & 2 \, \mathrm{V} & | :4 \, \mathrm{k}\Omega \end{array}$$

$$I_3 & = & \frac{2 \, \mathrm{V}}{4 \, \mathrm{k}\Omega}$$

$$I_3 & = & 0.5 \, \mathrm{mA}$$

Dieses Ergebnis kann in die umgestellte Gleichung (5) eingesetzt werden.

$$I_5 = 0.9 \cdot I_3 = 0.9 \cdot 0.5 \,\text{mA} = 0.45 \,\text{mA}$$

Damit ist das Gleichungssystem gelöst. Es fehlen aber noch die Ströme I_1 und I_4 .

Nach der Kirchhoffschen Knotenregel gilt am Knoten links oben:

$$I_1 = I_2 + I_3 = 2 \,\mathrm{mA} + 0.5 \,\mathrm{mA} = 2.5 \,\mathrm{mA}$$

Mit der gleichen Regel gilt am Knoten rechts oben:

$$I_4 = I_3 - I_5 = 0.5 \,\mathrm{mA} - 0.45 \,\mathrm{mA} = 0.05 \,\mathrm{mA}$$

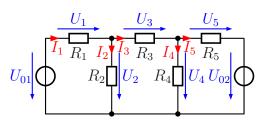
$$I_1 = 2.5 \,\mathrm{mA}$$
 $I_2 = 2 \,\mathrm{mA}$ $I_3 = 0.5 \,\mathrm{mA}$ $I_4 = 50 \,\mu\mathrm{A}$ $I_5 = 0.45 \,\mathrm{mA}$

6.1.3 Aufgabe 17

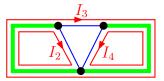
Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

Gegeben sind folgende Werte:

$$U_{01} = 20 \,\mathrm{V}$$
 $U_{02} = 10 \,\mathrm{V}$ $R_1 = 2 \,\mathrm{k}\Omega$ $R_2 = 3 \,\mathrm{k}\Omega$ $R_3 = 400 \,\Omega$ $R_4 = 500 \,\Omega$ $R_5 = 2 \,\mathrm{k}\Omega$



Lösung: Die Struktur der Schaltung ist identisch mit Aufgabe 2. Daher gibt es hier die gleichen Möglichkeiten, den Baum zulegen. Eine Wiederholung erübrigt sich daher an dieser Stelle. Nebenstehend ist die Struktur der Schaltung mit dem ausgewählten Vollständigen Baum dargestellt. Der Baum wurde entsprechend der Faustregel durch die Spannungsquellen gelegt. Die Maschengleichungen können aufgestellt werden.



Zur Abwechslung löse ich das Gleichungssystem mit der Cramerschen Regel¹.

$$I_{2} = \frac{\begin{vmatrix} 20 \,\mathrm{V} & 2 \,\mathrm{k}\Omega & 0 \,\mathrm{k}\Omega \\ 10 \,\mathrm{V} & 4,4 \,\mathrm{k}\Omega & -2 \,\mathrm{k}\Omega \\ 10 \,\mathrm{V} & -2 \,\mathrm{k}\Omega & 2,5 \,\mathrm{k}\Omega \end{vmatrix}}{\begin{vmatrix} 5 \,\mathrm{k}\Omega & 2 \,\mathrm{k}\Omega & 0 \,\mathrm{k}\Omega \\ 2 \,\mathrm{k}\Omega & 4,4 \,\mathrm{k}\Omega & -2 \,\mathrm{k}\Omega \\ 0 \,\mathrm{k}\Omega & -2 \,\mathrm{k}\Omega & 2,5 \,\mathrm{k}\Omega \end{vmatrix}}$$

$$= \frac{220 \,\mathrm{k}\Omega^{2}\mathrm{V} - 40 \,\mathrm{k}\Omega^{2}\mathrm{V} - 80 \,\mathrm{k}\Omega^{2}\mathrm{V} - 50 \,\mathrm{k}\Omega^{2}\mathrm{V}}{55 \,\mathrm{k}\Omega^{3} - 20 \,\mathrm{k}\Omega^{3} - 10 \,\mathrm{k}\Omega^{3}}$$

$$= \frac{50 \,\mathrm{k}\Omega^{2}\mathrm{V}}{25 \,\mathrm{k}\Omega^{3}}$$

$$I_{2} = 2 \,\mathrm{mA}$$

¹Einzelheiten zur Cramerschen Regel findet man beispielsweise hier: http://www.dk4ek.de/lib/exe/fetch.php/cramer.pdf

Mit diesem Ergebnis kann aus Gleichung (2) der Strom I_3 bestimmt werden.

$$5 k\Omega \cdot I_{2} + 2 k\Omega \cdot I_{3} = 20 V
5 k\Omega \cdot 2 mA + 2 k\Omega \cdot I_{3} = 20 V
10 V + 2 k\Omega \cdot I_{3} = 20 V -10 V
2 k\Omega \cdot I_{3} = 10 V | : 2 k\Omega
I_{3} = \frac{10 V}{2 k\Omega}
I_{3} = 5 mA$$

Mit diesem Ergebnis kann aus Gleichung (4) der Strom I_4 bestimmt werden.

$$\begin{array}{rcl}
-2 k\Omega \cdot I_{3} + 2.5 k\Omega \cdot I_{4} & = & 10 \text{ V} \\
-2 k\Omega \cdot 5 \text{ mA} + 2.5 k\Omega \cdot I_{4} & = & 10 \text{ V} \\
-10 \text{ V} + 2.5 k\Omega \cdot I_{4} & = & 10 \text{ V} & | + 10 \text{ V} \\
2.5 k\Omega \cdot I_{4} & = & 20 \text{ V} & | : 2.5 k\Omega
\end{array}$$

$$I_{4} = \frac{20 \text{ V}}{2.5 \text{ k}\Omega}$$

$$I_{4} = 8 \text{ mA}$$

Am oberen linken Knoten folgt aus der Kirchhoffschen Knotenregel:

$$I_1 = I_2 + I_3 = 2 \,\mathrm{mA} + 5 \,\mathrm{mA} = 7 \,\mathrm{mA}$$

Am oberen rechten Knoten folgt aus der Kirchhoffschen Knotenregel:

$$I_5 = I_3 - I_4 = 5 \,\mathrm{mA} - 8 \,\mathrm{mA} = -3 \,\mathrm{mA}$$

An dem Minuszeichen im Ergebnis kann man erkennen, dass der Strom nicht nach rechts, wie in der Schaltung eingezeichnet, sondern tatsächlich nach links fließt.

Alle gesuchten Spannungen erhält man mit Hilfe des Ohmschen Gesetzes an dem jeweiligen Widerstand.

$$U_{1} = R_{1} \cdot I_{1} = 2 \,\mathrm{k}\Omega \cdot 7 \,\mathrm{mA} = 14 \,\mathrm{V}$$

$$U_{2} = R_{2} \cdot I_{2} = 3 \,\mathrm{k}\Omega \cdot 2 \,\mathrm{mA} = 6 \,\mathrm{V}$$

$$U_{3} = R_{3} \cdot I_{3} = 400 \,\Omega \cdot 5 \,\mathrm{mA} = 2 \,\mathrm{V}$$

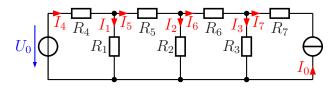
$$U_{4} = R_{4} \cdot I_{4} = 500 \,\Omega \cdot 8 \,\mathrm{mA} = 4 \,\mathrm{V}$$

$$U_{5} = R_{5} \cdot I_{5} = 2 \,\mathrm{k}\Omega \cdot 3 \,\mathrm{mA} = 6 \,\mathrm{V}$$

$$I_1 = 7 \,\mathrm{mA}$$
 $I_2 = 2 \,\mathrm{mA}$ $I_3 = 5 \,\mathrm{mA}$ $I_4 = 8 \,\mathrm{mA}$ $I_5 = -3 \,\mathrm{mA}$ $U_1 = 14 \,\mathrm{V}$ $U_2 = 6 \,\mathrm{V}$ $U_3 = 2 \,\mathrm{V}$ $U_4 = 4 \,\mathrm{V}$ $U_5 = -6 \,\mathrm{V}$

6.1.4 Aufgabe 18

Bestimmen Sie alle Ströme in nebenstehender Schaltung! Verwenden Sie dazu das Maschenstromverfahren. Legen Sie zunächst einen geeigneten Vollständigen Baum fest, bevor Sie mit der Rechnung beginnen. Gegeben sind folgende Werte:



Ein Tipp: Wandeln Sie die Stromquelle vorher in eine Spannungsquelle um!

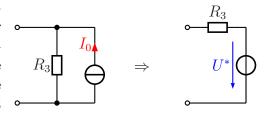
Lösung: Zunächst wird die Stromquelle I_0 in eine Spannungquelle umgewandelt. Dabei stellt sich die Frage, welcher Widerstand (bzw. welche Widerstände) dabei als *Innenwiderstand* anzusehen ist. Die erste Erkenntnis dabei ist: Der Widerstand R_7 spielt keine Rolle, er kann bei den weiteren Überlegungen weggelassen werden!

Warum ist das so? Dazu gibt es zwei mögliche Denkansätze.

- Der Innenwiderstand einer idealen Stromquelle ist ∞ . Schaltet man dazu den Widerstand R_7 in Reihe, ist der Gesamtwiderstand immer noch ∞ , er bewirkt also keine Veränderung.
- Die Stromquelle liefert einen konstanten Strom. Dieser Strom ist lastunabhängig immer gleich. Daher fließt dieser Strom auch unverändert durch R_7 .

Der einzige Unterschied, der sich ergeben würde, wenn man R_7 überbrücken würde, wäre eine andere Spannung direkt an den Anschlussklemmen der idealen Stromquelle. Diese Spannung wäre um den Spannungsfall an R_7 kleiner als mit aktivem R_7 . Die Spannung an der Reihenschaltung aus der Stromquelle mit diesem Widerstand wäre jedoch in jedem Fall gleich.

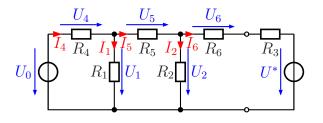
Nebenstehend ist die Umwandlung dargestellt. Der Widerstand R_7 wurde bereits weggelassen. Dann arbeitet R_3 als Innenwiderstand der Stromquelle und taucht daher auch als Innenwiderstand der Spannungsquelle wieder auf. Die Urspannung dieser Ersatzspannungsquelle habe ich mit U^* bezeichnet. Diese Spannung kann mit Hilfe des Ohmschen Gesetzes aus dem Urstrom



 I_0 und dem Innenwiderstand der Stromquelle R_3 berechnet werden.

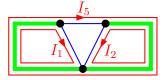
$$U^* = R_3 \cdot I_0 = 1 \,\mathrm{k}\Omega \cdot 20 \,\mathrm{mA} = 20 \,\mathrm{V}$$

Setzt man diese Ersatzschaltung an der rechten Seite in die gegebene Schaltung ein, dann erhält man nebenstehende Schaltung. In dieser Form ähnelt die Schaltung sehr stark der Schaltung aus der vorangehenden Aufgabe 3. Lediglich die Bezeichnungen der Widerstände,



Spannungen und Ströme sind anders. Zu beachten ist hier, dass in dieser Ersatzschaltung an R_3 nicht die Werte U_3 und I_3 aus der Originalschaltung zu messen sind.

Nebenstehend ist die Struktur der Schaltung mit einem Vollständigen Baum dargestellt. Da es sich wiederum sinngemäß um die gleiche Struktur, wie bei Aufgabe 3 handelt, verzichte ich hier auf die Darstellung der Alternativen. Der Baum wurde entsprechend der Faustregel durch die Spannungsquellen gelegt. Die Maschengleichungen können aufgestellt werden.



Es bietet sich an, Gleichung (2) nach I_2 aufzulösen. Damit kann das Einsetzungsverfahren verwendet werden.

Das Ergebnis muss nur in Gleichung (5) eingesetzt werden, da in Gleichung (1) der Strom I_2 nicht vorkommt.

$$1,25 \,\mathrm{k}\Omega \cdot I_1 - 4 \,\mathrm{k}\Omega \cdot I_2 + 6,25 \,\mathrm{k}\Omega \cdot I_5 = -8 \,\mathrm{V}$$

$$1,25 \,\mathrm{k}\Omega \cdot I_1 - 4 \,\mathrm{k}\Omega \cdot (2,5 \,\mathrm{mA} + 0,5 \cdot I_5) + 6,25 \,\mathrm{k}\Omega \cdot I_5 = -8 \,\mathrm{V}$$

$$1,25 \,\mathrm{k}\Omega \cdot I_1 - 10 \,\mathrm{V} - 2 \,\mathrm{k}\Omega \cdot I_5 + 6,25 \,\mathrm{k}\Omega \cdot I_5 = -8 \,\mathrm{V} \quad | + 10 \,\mathrm{V}$$

$$1,25 \,\mathrm{k}\Omega \cdot I_1 + 4,25 \,\mathrm{k}\Omega \cdot I_5 = 2 \,\mathrm{V}$$

Ubrig geblieben ist mit dieser Gleichung (5) und Gleichung (1) jetzt ein Lineargleichungssystem mit nur noch zwei Variablen.

(1)
$$2,65 \text{ k}\Omega \cdot I_1 + 1,25 \text{ k}\Omega \cdot I_5 = 12 \text{ V}$$

(5) $1,25 \text{ k}\Omega \cdot I_1 + 4,25 \text{ k}\Omega \cdot I_5 = 2 \text{ V}$

Zur Abwechslung verwende ich für den nächsten Reduktionsschritt das Additions-/Subtraktionsverfahren.

Das Ergebnis kann in Gleichung (1) eingesetzt werden, um I_5 zu bestimmen.

$$\begin{array}{rclcrcl} 11,262\,5\,\mathrm{k}\Omega\cdot I_{1}+5,312\,5\,\mathrm{k}\Omega\cdot I_{5} &=& 51\,\mathrm{V} \\ 11,262\,5\,\mathrm{k}\Omega\cdot 5\,\mathrm{mA}+5,312\,5\,\mathrm{k}\Omega\cdot I_{5} &=& 51\,\mathrm{V} \\ &&& 56,312\,5\,\mathrm{V}+5,312\,5\,\mathrm{k}\Omega\cdot I_{5} &=& 51\,\mathrm{V} & |-56,312\,5\,\mathrm{V} \\ &&& 5,312\,5\,\mathrm{k}\Omega\cdot I_{5} &=& -5,312\,5\,\mathrm{V} & |:5,312\,5\,\mathrm{k}\Omega \\ &&& I_{5} &=& -1\,\mathrm{mA} \end{array}$$

Dieses Ergebnis wird in die umgestellte Gleichung (2) eingesetzt.

$$I_2 = 2.5 \,\mathrm{mA} + 0.5 \cdot I_5 = 2.5 \,\mathrm{mA} + 0.5 \cdot (-1 \,\mathrm{mA}) = 2.5 \,\mathrm{mA} - 0.5 \,\mathrm{mA} = 2 \,\mathrm{mA}$$

Damit ist das Gleichungssystem gelöst. Die weiteren Ströme erhält man jeweils über die Kirchhoffsche Knotenregel (an unterschiedlichen Knoten). Am Knoten oben links gilt:

$$I_4 = I_1 + I_5 = 5 \,\mathrm{mA} - 1 \,\mathrm{mA} = 4 \,\mathrm{mA}$$

Am Knoten oben in der Mitte gilt:

$$I_6 = I_1 - I_3 = -1 \,\text{mA} - 2 \,\text{mA} = -3 \,\text{mA}$$

Spätestens jetzt müssen wir die Ersatzschaltung verlassen und in die Originalschaltung zurückgehen. Da hier der Urstrom I_0 durch R_7 fließt, gilt unter Berücksichtigung der Stromrichtung:

$$I_7 = -I_0 = -20 \,\mathrm{mA}$$

Damit kann am Knoten oben rechts der Strom I_3 berechnet werden.

$$I_3 = I_6 - I_7 = -3 \,\text{mA} - (-20 \,\text{mA}) = 17 \,\text{mA}$$

$$I_1 = 5 \text{ mA}$$
 $I_2 = 2 \text{ mA}$ $I_3 = 17 \text{ mA}$ $I_4 = 4 \text{ mA}$

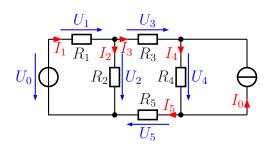
$$I_5 = -1 \text{ mA}$$
 $I_6 = -3 \text{ mA}$ $I_7 = -20 \text{ mA}$

6.1.5 Aufgabe 19

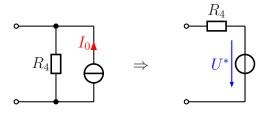
Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

Gegeben sind folgende Werte:

$$U_0 = 20 \,\mathrm{V}$$
 $I_0 = 10 \,\mathrm{mA}$
 $R_1 = 4 \,\mathrm{k}\Omega$ $R_2 = 5 \,\mathrm{k}\Omega$
 $R_3 = 10 \,\mathrm{k}\Omega$ $R_4 = 2 \,\mathrm{k}\Omega$
 $R_5 = 8 \,\mathrm{k}\Omega$



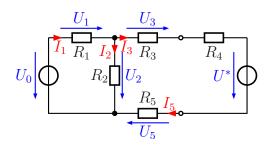
Lösung: Zunächst wird die Stromquelle I_0 in eine Spannungquelle umgewandelt. Nebenstehend ist die Umwandlung dargestellt. Darin arbeitet R_4 als Innenwiderstand der Stromquelle und taucht daher auch als Innenwiderstand der Spannungsquelle wieder auf. Die Urspannung dieser Ersatzspannungsquelle habe ich mit U^* bezeichnet. Diese Spannung kann mit Hilfe



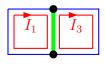
des Ohmschen Gesetzes aus dem Urstrom I_0 und dem Innenwiderstand der Stromquelle R_4 berechnet werden.

$$U^* = R_4 \cdot I_0 = 2 \,\mathrm{k}\Omega \cdot 10 \,\mathrm{mA} = 20 \,\mathrm{V}$$

Mit dieser Teil-Ersatzschaltung ergibt sich nebenstehendes Bild der Schaltung. Der Strom I_4 und die Spannung U_4 sind jetzt nicht mehr eingetragen, weil in dieser Schaltung an R_4 andere Werte anstehen. Nur für den Teil links von den Anschlussklemmen bleiben alle Werte erhalten. I_3 und I_5 sind gleich, weil die Widerstände (zusammen mit R_4 und U^*) in Reihe geschaltet sind.



Nebenstehend ist die Struktur der Schaltung mit einem Vollständigen Baum dargestellt. Da es nur zwei Knoten gibt, ist der Baum recht simpel. Grundsätzlich gibt es nur drei Möglichkeiten, den Baum zu legen: über den linken Zweig, über den rechten Zweig oder durch den mittleren Zweig. Ich habe ihn durch Widerstand R_2 gelegt, weil dann



die Strutur der Maschenströme recht übersichtlich wird. Eine der Spannungsquellen mit einzubeziehen, wie es die Faustregel sagt, bringt in diesem Fall keine Vorteile. Die Maschenströme sind damit I_1 und I_3 . Damit können die Maschengleichungen aufgestellt werden.

Dieses Gleichungssystem kann mit einem beliebigen Lösungsverfahren aufgelöst werden. Hier bietet sich das Additionsverfahren an, denn Gleichung (3) kann bequem durch 5 dividiert werden.

Das Ergebnis kann beispielsweise in Gleichung (1) eingesetzt werden, um I_3 zu bestimmen.

$$\begin{array}{rcl} 9 \, \mathrm{k}\Omega \cdot I_1 - 5 \, \mathrm{k}\Omega \cdot I_3 & = & 20 \, \mathrm{V} \\ 9 \, \mathrm{k}\Omega \cdot 2 \, \mathrm{mA} - 5 \, \mathrm{k}\Omega \cdot I_3 & = & 20 \, \mathrm{V} \\ 18 \, \mathrm{V} - 5 \, \mathrm{k}\Omega \cdot I_3 & = & 20 \, \mathrm{V} & | -18 \, \mathrm{V} \\ -5 \, \mathrm{k}\Omega \cdot I_3 & = & 2 \, \mathrm{V} & | : (-5 \, \mathrm{k}\Omega) \\ I_3 & = & -0.4 \, \mathrm{mA} \end{array}$$

Wegen $I_5 = I_3$ ist damit auch $I_5 = -0.4 \,\mathrm{mA}$.

Mit der Kirchhoffschen Knotenregel am oberen Knoten kann jetzt I_2 bestimmt werden.

$$I_2 = I_1 - I_3 = 2 \,\text{mA} - (-0.4 \,\text{mA}) = 2.4 \,\text{mA}$$

Zur Bestimmung von I_4 müssen wir zurückgehen in die Originalschaltung. Am Knoten oben rechts gilt:

$$I_4 = I_3 + I_0 = -0.4 \,\mathrm{mA} + 10 \,\mathrm{mA} = 9.6 \,\mathrm{mA}$$

Zum Abschluss können nun alle Spannungen über das Ohmsche Gesetz am jeweiligen Widerstand berechnet werden.

$$\begin{split} U_1 &= R_1 \cdot I_1 = 4 \, \mathrm{k}\Omega \cdot 2 \, \mathrm{mA} = 8 \, \mathrm{V} \\ U_2 &= R_2 \cdot I_2 = 5 \, \mathrm{k}\Omega \cdot 2,\! 4 \, \mathrm{mA} = 12 \, \mathrm{V} \\ U_3 &= R_3 \cdot I_3 = 10 \, \mathrm{k}\Omega \cdot (-0,\! 4 \, \mathrm{mA}) = -4 \, \mathrm{V} \\ U_4 &= R_4 \cdot I_4 = 2 \, \mathrm{k}\Omega \cdot 9,\! 6 \, \mathrm{mA} = 19,\! 2 \, \mathrm{V} \\ U_5 &= R_5 \cdot I_5 = 8 \, \mathrm{k}\Omega \cdot (-0,\! 4 \, \mathrm{mA}) = -3,\! 2 \, \mathrm{V} \end{split}$$

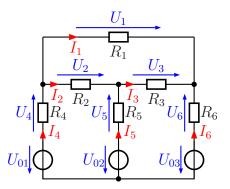
$$I_1 = 2 \,\text{mA}$$
 $I_2 = 2,4 \,\text{mA}$ $I_3 = -0.4 \,\text{mA}$ $I_4 = 9.6 \,\text{mA}$ $I_5 = -0.4 \,\text{mA}$
$$\boxed{U_1 = 8 \,\text{V} \quad U_2 = 12 \,\text{V} \quad U_3 = -4 \,\text{V} \quad U_4 = 19,2 \,\text{V} \quad U_5 = -3,2 \,\text{V}}$$

6.1.6 Aufgabe 20

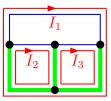
Bestimmen Sie alle Ströme und Spannungen in nebenstehender Schaltung!

Gegeben sind folgende Werte:

$$\begin{array}{ll} R_1 = 1 \, \mathrm{k}\Omega & R_2 = 1 \, \mathrm{k}\Omega \\ R_3 = 1 \, \mathrm{k}\Omega & R_4 = 400 \, \Omega \\ R_5 = 1{,}25 \, \mathrm{k}\Omega & R_6 = 1 \, \mathrm{k}\Omega \\ U_{01} = 10 \, \mathrm{V} & U_{02} = 20 \, \mathrm{V} \\ U_{03} = 15 \, \mathrm{V} & \end{array}$$



Lösung: Nebenstehend ist die Struktur der Schaltung mit einem Vollständigen Baum dargestellt. Ich habe ihn gemäß der Faustregel durch die drei Spannungquellen gelegt. Alle Knoten sind auf diese Weise auf einem eindeutigen Weg miteinander verbunden und die Maschen sind nicht unnötig lang. Die Maschenströme sind damit I_1 , I_2 und I_3 . Damit können die Maschengleichungen aufgestellt werden.



Zur Lösung des Gleichungssystems verwende ich die Cramersche Regel.

$$I_{1} = \frac{\begin{vmatrix} -5 \,\mathrm{V} & 0.4 \,\mathrm{k}\Omega & 1 \,\mathrm{k}\Omega \\ -10 \,\mathrm{V} & 2.65 \,\mathrm{k}\Omega & -1.25 \,\mathrm{k}\Omega \\ 5 \,\mathrm{V} & -1.25 \,\mathrm{k}\Omega & 3.25 \,\mathrm{k}\Omega \end{vmatrix}}{\begin{vmatrix} 2.4 \,\mathrm{k}\Omega & 0.4 \,\mathrm{k}\Omega & 1 \,\mathrm{k}\Omega \\ 0.4 \,\mathrm{k}\Omega & 2.65 \,\mathrm{k}\Omega & -1.25 \,\mathrm{k}\Omega \\ 1 \,\mathrm{k}\Omega & -1.25 \,\mathrm{k}\Omega & 3.25 \,\mathrm{k}\Omega \end{vmatrix}}$$

$$= \frac{-43.062 \,5 \,\mathrm{k}\Omega^{2} \mathrm{V} - 2.5 \,\mathrm{k}\Omega^{2} \mathrm{V} + 12.5 \,\mathrm{k}\Omega^{2} \mathrm{V} - 13.25 \,\mathrm{k}\Omega^{2} \mathrm{V} + 7.8125 \,\mathrm{k}\Omega^{2} \mathrm{V} + 13 \,\mathrm{k}\Omega^{2} \mathrm{V}}{20.67 \,\mathrm{k}\Omega^{3} - 0.5 \,\mathrm{k}\Omega^{3} - 0.5 \,\mathrm{k}\Omega^{3} - 2.65 \,\mathrm{k}\Omega^{3} - 3.75 \,\mathrm{k}\Omega^{3} - 0.52 \,\mathrm{k}\Omega^{3}}$$

$$= \frac{-25.5 \,\mathrm{k}\Omega^{2} \mathrm{V}}{12.75 \,\mathrm{k}\Omega^{3}}$$

$$I_{1} = -2 \,\mathrm{mA}$$

Da bei der Bestimmung von I_2 die Nennerdeterminante die gleiche ist, kann deren Wert sofort übernommen werden.

$$I_{2} = \frac{\begin{vmatrix} 2.4 \,\mathrm{k}\Omega & -5 \,\mathrm{V} & 1 \,\mathrm{k}\Omega \\ 0.4 \,\mathrm{k}\Omega & -10 \,\mathrm{V} & -1.25 \,\mathrm{k}\Omega \\ 1 \,\mathrm{k}\Omega & 5 \,\mathrm{V} & 3.25 \,\mathrm{k}\Omega \end{vmatrix}}{12.75 \,\mathrm{k}\Omega^{3}}$$

$$= \frac{-78 \,\mathrm{k}\Omega^{2}\mathrm{V} + 6.25 \,\mathrm{k}\Omega^{2}\mathrm{V} + 2 \,\mathrm{k}\Omega^{2}\mathrm{V} + 10 \,\mathrm{k}\Omega^{2}\mathrm{V} + 15 \,\mathrm{k}\Omega^{2}\mathrm{V} + 6.5 \,\mathrm{k}\Omega^{2}\mathrm{V}}{12.75 \,\mathrm{k}\Omega^{3}}$$

$$= \frac{-38.25 \,\mathrm{k}\Omega^{2}\mathrm{V}}{12.75 \,\mathrm{k}\Omega^{3}}$$

$$I_{2} = -3 \,\mathrm{mA}$$

Zur Bestimmung von I_3 können die Werte in eine beliebige Gleichung eingesetzt werden. Ich verwende willkürlich Gleichung (1).

$$\begin{array}{rclcrcl} 2.4 & \mathrm{k}\Omega \cdot I_{1} + 400 \,\Omega \cdot I_{2} + 1 \,\mathrm{k}\Omega \cdot I_{3} & = & -5 \,\mathrm{V} \\ 2.4 & \mathrm{k}\Omega \cdot (-2 \,\mathrm{mA}) + 400 \,\Omega \cdot (-3 \,\mathrm{mA}) + 1 \,\mathrm{k}\Omega \cdot I_{3} & = & -5 \,\mathrm{V} \\ -4.8 & \mathrm{V} - 1.2 \,\mathrm{V} + 1 \,\mathrm{k}\Omega \cdot I_{3} & = & -5 \,\mathrm{V} \\ -6 & \mathrm{V} + 1 \,\mathrm{k}\Omega \cdot I_{3} & = & -5 \,\mathrm{V} & | + 6 \,\mathrm{V} \\ 1 & \mathrm{k}\Omega \cdot I_{3} & = & 1 \,\mathrm{V} & | : 1 \,\mathrm{k}\Omega \\ I_{3} & = & 1 \,\mathrm{mA} \end{array}$$

Die übrigen Ströme können jeweils mit der Kirchhoffschen Knotenregel berechnet werden. Am Knoten links oben gilt:

$$I_4 = I_1 + I_2 = -2 \,\text{mA} - 3 \,\text{mA} = -5 \,\text{mA}$$

Am mittleren Knoten oben gilt:

$$I_5 = I_3 - I_2 = 1 \,\text{mA} - (-2 \,\text{mA}) = 3 \,\text{mA}$$

Am rechten Knoten gilt:

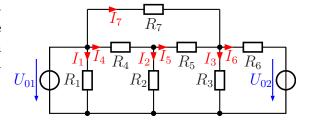
$$I_6 = -I_1 - I_3 = -(-2 \,\mathrm{mA}) - 1 \,\mathrm{mA} = 1 \,\mathrm{mA}$$

$$I_1 = -2 \text{ mA}$$
 $I_2 = -3 \text{ mA}$ $I_3 = 1 \text{ mA}$

$$I_4 = -5 \text{ mA}$$
 $I_5 = 4 \text{ mA}$ $I_6 = 1 \text{ mA}$

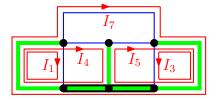
6.1.7 Aufgabe 21

Bestimmen Sie alle Ströme in nebenstehender Schaltung! Verwenden Sie dazu das Maschenstromverfahren. Legen Sie zunächst einen geeigneten Vollständigen Baum fest, bevor Sie mit der Rechnung beginnen.



$$U_{01} = 12 \,\mathrm{V}$$
 $R_1 = 200 \,\Omega$ $R_3 = 1.5 \,\mathrm{k}\Omega$ $R_5 = 1.5 \,\mathrm{k}\Omega$ $R_7 = 3 \,\mathrm{k}\Omega$ $U_{02} = 18 \,\mathrm{V}$ $R_2 = 300 \,\Omega$ $R_4 = 1.5 \,\mathrm{k}\Omega$ $R_6 = 1 \,\mathrm{k}\Omega$

Lösung: Nebenstehend ist die Struktur der Schaltung mit einem Vollständigen Baum dargestellt. Zu beachten ist, dass die drei untenliegenden "Knoten" keine eigenständigen Knoten sind, da sie leitend miteinander verbunden sind. Deshalb sind sie zu einem "Überknoten" zusammengefasst. Ich habe den Baum gemäß der Faustregel durch die beiden Spannung-



quellen gelegt. Zusätzlich war in der Mitte noch ein Abzweig notwendig. Die Maschenströme sind damit I_1 , I_3 , I_4 , I_5 und I_7 . Hiermit können die Maschengleichungen aufgestellt werden.

Aus Gleichung (1) ergibt sich sofort I_1 .

$$200 \Omega \cdot I_1 = 12 \text{ V} \mid : 200 \Omega$$

$$I_1 = \frac{12 \text{ V}}{200 \Omega}$$

$$I_1 = 60 \text{ mA}$$

Übrig bleibt nun ein Gleichungssystem 4. Ordnung.

Es bietet sich an, Gleichung (4) und Gleichung (5) zu addieren, wobei natürlich eine Gleichung zuvor mit einem geeigneten Faktor multipliziert werden muss.

Die Ergebnisgleichung (8) kann nun mit Gleichung (3) und (7) zu einem Gleichungssystem mit nur noch 3. Ordnung aufgeschrieben werden.

(3)
$$2.5 \,\mathrm{k}\Omega \cdot I_3$$
 $-1 \,\mathrm{k}\Omega \cdot I_5$ $-1 \,\mathrm{k}\Omega \cdot I_7 = 18 \,\mathrm{V}$
(7) $-1 \,\mathrm{k}\Omega \cdot I_3$ $+1 \,\mathrm{k}\Omega \cdot I_5$ $+4 \,\mathrm{k}\Omega \cdot I_7 = -6 \,\mathrm{V}$
(8) $-6 \,\mathrm{k}\Omega \cdot I_3$ $+16.5 \,\mathrm{k}\Omega \cdot I_5$ $+6 \,\mathrm{k}\Omega \cdot I_7 = -96 \,\mathrm{V}$

Für die weitere Lösung kann nun ein beliebiges Lösungsverfahren verwendet werden. Ich empfehle die Cramersche Regel. Das möchte ich hier nicht im Detail vorführen. Man erhält die Lösungen:

$$I_3 = 6 \,\mathrm{mA}$$
 $I_5 = -4 \,\mathrm{mA}$ $I_7 = 1 \,\mathrm{mA}$

Jetzt fehlen nur noch die Ströme, die innerhalb des Baumes in den jeweiligen Widerständen fließen. Dazu wird jeweils die Kirchhoffsche Knotenregel verwendet.

Am Knoten in der Mitte gilt:

$$I_2 = I_4 - I_5 = 6 \,\mathrm{mA} - (-4 \,\mathrm{mA}) = 10 \,\mathrm{mA}$$

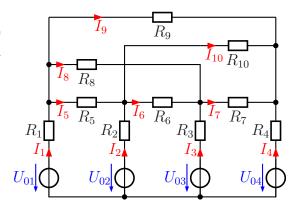
Am Knoten rechts gilt:

$$I_6 = I_5 + I_7 - I_3 = -4 \,\mathrm{mA} + 1 \,\mathrm{mA} - 6 \,\mathrm{mA} = -9 \,\mathrm{mA}$$

$$I_1 = 60 \,\text{mA}$$
 $I_2 = 10 \,\text{mA}$ $I_3 = 6 \,\text{mA}$ $I_4 = -6 \,\text{mA}$ $I_5 = -4 \,\text{mA}$ $I_6 = -9 \,\text{mA}$ $I_7 = 1 \,\text{mA}$

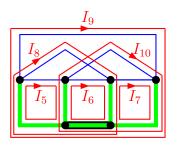
6.1.8 Aufgabe 22

Bestimmen Sie alle Ströme in nebenstehender Schaltung! Verwenden Sie dazu das Maschenstromverfahren. Legen Sie zunächst einen geeigneten Vollständigen Baum fest, bevor Sie mit der Rechnung beginnen.



Lösung: Zugegeben, diese Schaltung ist schon recht umfangreich. Aber trotzdem möchte ich einen Lösungsweg darstellen, denn das Maschenstromverfahren ist mächtig genug.

Ich verwende für die Lösung den nebenstehend dargestellten Vollständigen Baum. Zu beachten ist, dass die beiden untenliegenden "Knoten" keine eigenständigen Knoten sind, da sie leitend miteinander verbunden sind. Deshalb sind sie zu ei-



nem "Überknoten" zusammengefasst. Ich habe den Baum gemäß der Faustregel durch die vier Spannungquellen gelegt. Damit ergeben sich die hier dargestellten Maschenströme. Die Maschengleichungen können aufgestellt werden. (Aus Platzgründen sind die Gleichungen nicht mit einer Gleichungsnummer versehen.)

$(R_1 + R_5 + R_2)I_5$	$-R_{2}I_{6}$		$+R_{1}I_{8}$	$+R_{1}I_{9}$	$-R_{2}I_{10}$	=	$U_{01} - U_{02}$
$-R_{2}I_{5}$	$+(R_2+R_6+R_3)I_6$	$-R_{3}I_{7}$	$+R_{3}I_{8}$		$+R_{2}I_{10}$	=	$U_{02} - U_{03}$
	$-R_{3}I_{6}$	$+(R_3+R_7+R_4)I_7$	$-R_{3}I_{8}$	$+R_{4}I_{9}$	$+R_{4}I_{10}$	=	$U_{03} - U_{04}$
R_1I_5	$+R_{3}I_{6}$	$-R_{3}I_{7}$	$+(R_1+R_8+R_3)I_8$	$+R_{1}I_{9}$		=	$U_{01} - U_{03}$
R_1I_5		$+R_{4}I_{7}$	$+R_{1}I_{8}$	$+(R_1 + R_9 + R_4)I_9$	$+R_4I_{10}$	=	$U_{01} - U_{04}$
$-R_{2}I_{5}$	$+R_{2}I_{6}$	$+R_{4}I_{7}$		$+R_{4}I_{9}$	$+(R_2+R_{10}+R_4)I_{10}$	=	$U_{02}-U_{04}$

Aus Platzgründen lasse ich beim Einsetzen der Werte die Einheiten weg. Die Widerstände werden in $k\Omega$ und die Spannungen in V eingesetzt, dann ergeben sich die Ströme in der Einheit mA.

Dieses Gleichungssystem kann mit jedem beliebigen Verfahren aufgelöst werden. Da es doch recht umfangreich ist, möchte ich das nicht im Detail vorrechnen. Wenn man es beispielsweise mit einem Rechenprogramm löst, erhält man folgende Werte:

$$I_5 = 0 \,\mathrm{mA}$$
 $I_6 = 1 \,\mathrm{mA}$ $I_7 = 5 \,\mathrm{mA}$ $I_8 = 2 \,\mathrm{mA}$ $I_9 = 2 \,\mathrm{mA}$ $I_{10} = 5 \,\mathrm{mA}$

Es fehlen nur noch die Ströme I_1 bis I_4 . Diese können mit der Kirchhoffschen Knotenregel an den Knoten oberhalb der Widerstände R_1 bis R_4 berechnet werden.

Am Knoten über R_1 gilt:

$$I_1 = I_5 + I_8 + I_9 = 0 \,\text{mA} + 2 \,\text{mA} + 2 \,\text{mA} = 4 \,\text{mA}$$

Am Knoten über R_2 gilt:

$$I_2 = I_6 + I_{10} - I_5 = 1 \,\text{mA} + 5 \,\text{mA} - 0 \,\text{mA} = 6 \,\text{mA}$$

Am Knoten über R_3 gilt:

$$I_3 = I_7 - I_6 - I_8 = 5 \,\text{mA} - 1 \,\text{mA} - 2 \,\text{mA} = 2 \,\text{mA}$$

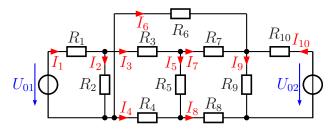
Am Knoten über R_4 gilt:

$$I_4 = -I_7 - I_9 - I_{10} = -5 \,\text{mA} - 2 \,\text{mA} - 5 \,\text{mA} = -12 \,\text{mA}$$

$$I_1 = 4 \,\mathrm{mA}$$
 $I_2 = 6 \,\mathrm{mA}$ $I_3 = 2 \,\mathrm{mA}$ $I_4 = -12 \,\mathrm{mA}$ $I_5 = 0 \,\mathrm{mA}$
 $I_6 = 1 \,\mathrm{mA}$ $I_7 = 5 \,\mathrm{mA}$ $I_8 = 2 \,\mathrm{mA}$ $I_9 = 2 \,\mathrm{mA}$ $I_{10} = 5 \,\mathrm{mA}$

6.1.9 Aufgabe 23

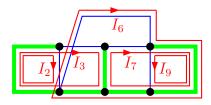
Bestimmen Sie alle Ströme in nebenstehender Schaltung! Verwenden Sie dazu das Maschenstromverfahren. Legen Sie zunächst einen geeigneten Vollständigen Baum fest, bevor Sie mit der Rechnung beginnen.



Bekannt sind folgende Werte:

$$U_{01} = 15 \,\mathrm{V}$$
 $U_{02} = 20 \,\mathrm{V}$ $R_1 = 1 \,\mathrm{k}\Omega$ $R_2 = 13 \,\mathrm{k}\Omega$
 $R_3 = 3 \,\mathrm{k}\Omega$ $R_4 = 1 \,\mathrm{k}\Omega$ $R_5 = 11 \,\mathrm{k}\Omega$ $R_6 = 5 \,\mathrm{k}\Omega$
 $R_7 = 10 \,\mathrm{k}\Omega$ $R_8 = 500 \,\Omega$ $R_9 = 2 \,\mathrm{k}\Omega$ $R_{10} = 1 \,\mathrm{k}\Omega$

Lösung: Nebenstehend ist die Struktur der Schaltung mit einem Vollständigen Baum dargestellt. Ich habe den Baum gemäß der Faustregel durch die beiden Spannungquellen gelegt. Zusätzlich war in der Mitte noch ein Abzweig notwendig. Die Maschenströme sind damit I_2 , I_3 , I_6 , I_7 und I_9 . Hiermit können die Maschengleichungen aufgestellt werden.



Die gegebenen Werte werden in die Gleichungen eingesetzt.

Dieses Gleichungssystem kann mit jedem beliebigen Verfahren aufgelöst werden. Da es doch recht umfangreich ist, möchte ich das nicht im Detail vorrechnen. Wenn man es beispielsweise mit einem Rechenprogramm löst, erhält man folgende Werte:

$$I_2 = 1 \,\text{mA}$$
 $I_3 = 1 \,\text{mA}$ $I_6 = -2 \,\text{mA}$ $I_7 = 0 \,\text{mA}$ $I_9 = 6 \,\text{mA}$

Es fehlen nur noch die Ströme I_1 , I_4 , I_5 und I_{10} . Diese können mit der Kirchhoffschen Knotenregel an unterschiedlichen Knoten berechnet werden.

Am linken oberen Knoten gilt:

$$I_1 = I_2 + I_3 = 1 \,\text{mA} + 1 \,\text{mA} = 2 \,\text{mA}$$

Am Knoten in der links unten gilt:

$$I_4 = I_2 - I_1 - I_6 = 1 \,\mathrm{mA} - 2 \,\mathrm{mA} - (-2 \,\mathrm{mA}) = 1 \,\mathrm{mA}$$

Am Knoten in der Mitte oben gilt:

$$I_5 = I_3 - I_7 = 1 \,\mathrm{mA} - 0 \,\mathrm{mA} = 1 \,\mathrm{mA}$$

Am Knoten rechts oben gilt:

$$I_{10} = I_9 - I_6 - I_7 = 6 \,\text{mA} - (-2 \,\text{mA}) - 0 \,\text{mA} = 8 \,\text{mA}$$

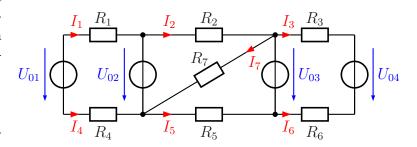
$I_1 =$	$2\mathrm{mA}$	$I_2 = 1 \mathrm{mA}$	$I_3 = 1 \mathrm{mA}$	$I_4 = 1 \mathrm{mA}$	$I_5 = 1 \mathrm{mA}$
$I_6 = -$	-2 mA	$I_7 = 0 \mathrm{mA}$	$I_8 = 2 \mathrm{mA}$	$I_9 = 6 \mathrm{mA}$	$I_{10} = 8 \mathrm{mA}$

7 Gemischte Aufgaben

7.1 Berechnung der Ströme

7.1.1 Aufgabe 24

Bestimmen Sie die Ströme I_1 bis I_7 in nebenstehender Schaltung! Verwenden Sie dazu ein beliebiges Lösungsverfahren.



Bekannt sind folgende Werte:

Lösung: Für die Lösung sind der Überlagerungssatz und das Maschenstromverfahren sinnvoll möglich. Vorweg sind für beide Lösungsverfahren ein paar Vorüberlegungen möglich und auch sinnvoll.

Betrachten wir zunächst die Masche $R_1 - U_{02} - R_4 - U_{01}$. Hier ergibt sich aus der Kirchhoffschen Maschenregel:

$$I_4 = -I_1$$

Durch einen Maschenumlauf in dieser Masche können wir I_1 bzw. I_4 bestimmen:

$$R_{1} \cdot I_{1} + U_{02} + R_{4} \cdot I_{1} - U_{01} = 0$$

$$R_{1} \cdot I_{1} + R_{4} \cdot I_{1} = U_{01} - U_{02}$$

$$(R_{1} + R_{4}) \cdot I_{1} = U_{01} - U_{02}$$

$$I_{1} = \frac{U_{01} - U_{02}}{R_{1} + R_{4}}$$

$$I_{1} = \frac{1 \text{ k}\Omega + 500 \Omega}{7 \text{ V} - 4 \text{ V}}$$

$$I_{1} = 2 \text{ mA}$$

$$I_{4} = -I_{1}$$

$$I_{4} = -2 \text{ mA}$$

Entsprechend erhalten wir aus der Masche $R_3 - U_{04} - R_6 - U_{03}$:

$$I_6 = -I_3$$

Auch hier können wir mit einem Maschenumlauf I_3 bzw. I_6 bestimmen:

$$R_{3} \cdot I_{3} + U_{04} + R_{6} \cdot I_{3} - U_{03} = 0$$

$$R_{3} \cdot I_{3} + R_{6} \cdot I_{3} = U_{03} - U_{04}$$

$$(R_{3} + R_{6}) \cdot I_{3} = U_{03} - U_{04}$$

$$I_{3} = \frac{U_{03} - U_{04}}{R_{3} + R_{6}}$$

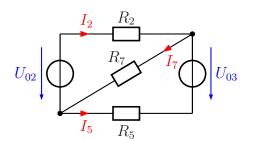
$$I_{3} = \frac{9 \text{ V} - 15 \text{ V}}{1 \text{ k}\Omega + 1 \text{ k}\Omega}$$

$$I_{4} = -3 \text{ mA}$$

$$I_{6} = -I_{3}$$

$$I_{6} = 3 \text{ mA}$$

Die linke und die rechte Masche ist damit berechnet. Es bleibt also nur noch der Mittelteil übrig, für den die Ströme I_2 , I_5 und I_7 bestimmt werden müssen. Die zugehörige "Restschaltung" ist nebenstehend hier dargestellt.



Die weitere Lösung verläuft ab hier unterschiedlich.

Lösung1 mit Uberlagerungssatz: Vorab: Ich bezeichne alle Ströme für den ersten Fall mit dem zusätzlichen Index 1 und für den zweiten Fall mit 2.

1. Fall: U_{02} in Betrieb

Wenn $U_{03} = 0$ ist, kann diese Spannungsquelle durch einen Kurzschluss ersetzt werden. Dann sind R_5 und R_7 parallel geschaltet. Es ergibt sich für diese beiden Widerstände ein Ersatzwiderstand:

$$R_{57} = R_5 \parallel R_7 = 600 \,\Omega \parallel 2 \,\mathrm{k}\Omega = 462 \,\Omega$$

Zu dieser Parallelschaltung ist R_2 in Reihe geschaltet. Für alle drei Widerstände ergibt sich dieser Ersatzwiderstand:

$$R_{257} = R_2 + R_{57} = 1 \,\mathrm{k}\Omega + 462 \,\Omega = 1462 \,\Omega$$

Damit kann nun I_{21} über das Ohmsche Gesetz an R_{257} bestimmt werden:

$$I_{21} = \frac{U_{02}}{R_{.257}} = \frac{4 \text{ V}}{1462 \Omega} = 2,736 \text{ mA}$$

Für die Bestimmung der Ströme I_{51} und I_{71} benötige ich die Teilspannung U_{57} an R_{57} . Diese Spannung lege ich in der Richtung von rechts oben nach links unten fest, also in der Richtung von I_7 .

$$U_{57} = R_{57} \cdot I_{21} = 462 \,\Omega \cdot 2{,}736 \,\mathrm{mA} = 1{,}264 \,\mathrm{V}$$

Hiermit können jetzt die beiden Ströme I_{51} und I_{71} jeweils über das Ohmsche Gesetz bestimmt werden. Hierbei ist zu beachten, dass die Stromrichtung von I_5 dieser Spannungsrichtung entgegen definiert ist, der Strom also negativ anzusetzen ist.

$$I_{51} = -\frac{U_{57}}{R_5} = -\frac{1,264 \text{ V}}{600 \Omega} = -2,107 \text{ mA}$$

$$I_{71} = \frac{U_{57}}{R_7} = \frac{1,264 \text{ V}}{2 \text{ k}\Omega} = 0,632 \text{ mA}$$

2. Fall: U_{03} in Betrieb

Wenn $U_{02} = 0$ ist, kann diese Spannungsquelle durch einen Kurzschluss ersetzt werden. Dann sind R_2 und R_7 parallel geschaltet. Es ergibt sich für diese beiden Widerstände ein Ersatzwiderstand:

$$R_{27} = R_2 \parallel R_7 = 1 \text{ k}\Omega \parallel 2 \text{ k}\Omega = 667 \Omega$$

Zu dieser Parallelschaltung ist R_5 in Reihe geschaltet. Für alle drei Widerstände ergibt sich dieser Ersatzwiderstand:

$$R_{257} = R_5 + R_{27} = 600 \,\Omega + 667 \,\Omega = 1267 \,\Omega$$

Damit kann nun I_{52} über das Ohmsche Gesetz an R_{257} bestimmt werden:

$$I_{52} = \frac{U_{03}}{R_{257}} = \frac{9 \text{ V}}{1267 \Omega} = 7,103 \text{ mA}$$

Für die Bestimmung der Ströme I_{22} und I_{72} benötige ich die Teilspannung U_{27} an R_{27} . Diese Spannung lege ich in der Richtung von rechts oben nach links unten fest, also in der Richtung von I_7 .

$$U_{27} = R_{27} \cdot I_{52} = 667 \,\Omega \cdot 7{,}103 \,\mathrm{mA} = 4{,}738 \,\mathrm{V}$$

Hiermit können jetzt die beiden Ströme I_{22} und I_{72} jeweils über das Ohmsche Gesetz bestimmt werden. Hierbei ist zu beachten, dass die Stromrichtung von I_2 dieser Spannungsrichtung entgegen definiert ist, der Strom also negativ anzusetzen ist.

$$I_{22} = -\frac{U_{27}}{R_2} = -\frac{4,738 \text{ V}}{1 \text{ k}\Omega} = -4,738 \text{ mA}$$

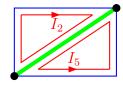
$$I_{72} = \frac{U_{27}}{R_7} = \frac{4,738 \text{ V}}{2 \text{ k}\Omega} = 2,364 \text{ mA}$$

Zusammenführung beider Fälle: Die eben berechneten Teilströme können nun zu den tatsächlichen Strömen zusammengefasst werden. Da die Zwischenergebnisse gerundet waren, ergeben sich jetzt auch eventuell Rundungsfehler.

$$I_2 = I_{21} + I_{22} = 2,736 \text{ mA} - 4,738 \text{ mA} = -2 \text{ mA}$$

 $I_5 = I_{51} + I_{52} = -2,107 \text{ mA} + 7,103 \text{ mA} = 5 \text{ mA}$
 $I_7 = I_{71} + I_{72} = 0,632 \text{ mA} + 2,364 \text{ mA} = 3 \text{ mA}$

Lösung 2 mit dem Maschenstromverfahren: Da die Schaltung recht simpel ist, ergibt sich ein sehr einfacher Baum. Es gibt nur 2 Knoten, nämlich an den Enden von R_7 . Daher lege ich den Baum auf R_7 . Die Ströme I_2 und I_5 sind dann die Maschenströme. Es ergibt sich folgendes Gleichungssystem:



$$\begin{array}{cccccccccc} (2) & (R_2 + R_7) \cdot I_2 & +R_7 \cdot I_5 & = & U_{02} \\ (5) & R_7 \cdot I_2 & +(R_5 + R_7) \cdot I_5 & = & U_{03} \\ \hline (2) & 3 \,\mathrm{k}\Omega \cdot I_2 & +2 \,\mathrm{k}\Omega \cdot I_5 & = & 4 \,\mathrm{V} \\ (5) & 2 \,\mathrm{k}\Omega \cdot I_2 & +2.6 \,\mathrm{k}\Omega \cdot I_5 & = & 9 \,\mathrm{V} \end{array}$$

Es bietet sich an, Gleichung (2) mit 2 und Gleichung (5) mit 3 zu multiplizieren und die Gleichungen voneinander zu subtrahieren. Dann erhält man schnell I_5 .

(2)
$$6 \,\mathrm{k}\Omega \cdot I_2$$
 +4 $\mathrm{k}\Omega \cdot I_5$ = 8 V |-
(5) $6 \,\mathrm{k}\Omega \cdot I_2$ +7,8 $\mathrm{k}\Omega \cdot I_5$ = 27 V |
3,8 $\mathrm{k}\Omega \cdot I_5$ = 19 V |:3,8 $\mathrm{k}\Omega$
 I_5 = 5 mA

Das Ergebnis setze ich in Gleichung (5) ein.

$$\begin{array}{rclcrcl} 2 \, \mathrm{k}\Omega \cdot I_2 + 2.6 \, \mathrm{k}\Omega \cdot I_5 & = & 9 \, \mathrm{V} \\ 2 \, \mathrm{k}\Omega \cdot I_2 + 2.6 \, \mathrm{k}\Omega \cdot 5 \, \mathrm{mA} & = & 9 \, \mathrm{V} \\ 2 \, \mathrm{k}\Omega \cdot I_2 + 13 \, \mathrm{V} & = & 9 \, \mathrm{V} & | -13 \, \mathrm{V} \\ 2 \, \mathrm{k}\Omega \cdot I_2 & = & -4 \, \mathrm{V} & | : 2 \, \mathrm{k}\Omega \\ I_2 & = & -2 \, \mathrm{mA} \end{array}$$

In R_7 fließen die Ströme I_2 und I_5 . Die Summe dieser Ströme stellen dann I_7 dar.

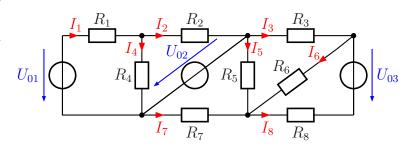
$$I_7 = I_2 + I_5 = -2 \,\text{mA} + 5 \,\text{mA} = 3 \,\text{mA}$$

$$I_1 = 2 \text{ mA}$$
 $I_2 = -2 \text{ mA}$ $I_3 = -3 \text{ mA}$ $I_4 = -2 \text{ mA}$

$$I_5 = 5 \text{ mA}$$
 $I_6 = 3 \text{ mA}$ $I_7 = 3 \text{ mA}$

7.1.2 Aufgabe 25

Bestimmen Sie die Ströme I_1 bis I_8 in nebenstehender Schaltung! Verwenden Sie dazu ein beliebiges Lösungsverfahren.



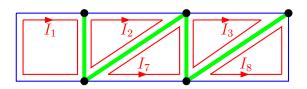
Bekannt sind folgende Werte:

Lösung: Auch bei dieser Schaltung sind mehrere Lösungsmöglichkeiten denkbar. Beispielsweise ist es möglich, durch Umwandlungen von Spannungsteilern in Spannungsquellen mit Innenwiderständen die Schaltung zu vereinfachen. Ich möchte dies hier aber nur grob skizzieren, ohne das im Detail vorzurechnen.

Hier wäre links die Spannungsquelle U_{01} mit den Widerständen R_1 und R_4 als Spannungsquelle mit Innenwiderstand umzurechnen. Damit kann dann sofort I_2 über die Masche mit R_2 und U_{02} und die eben erstellte Umrechnung bestimmt werden. Dann kann U_2 (die Spannung an R_2) und U_4 (die Spannung an R_4) berechnet werden. Damit erhält man dann über das Ohmsche Gesetz an R_4 den Strom I_4 . Zum Schluss wird mit der Kirchhoffschen Knotenregel der Strom I_1 bestimmt.

Auch im rechten Teilbereich helfen Spannungteiler-Umwandlungen weiter. Der eben durchgerechnete linke Teil hat keinen Einfluss auf den rechten Teil, weil beide direkt an U_{02} angeschlossen sind. Der rechte Teil kann also unabhängig vom Rest durchgerechnet werden. Hier kann U_{02} mit dem Spannungsteiler aus R_7 und R_5 sowie U_{03} mit dem Spannungsteiler aus R_8 und R_6 jeweils in eine Spannungsquelle mit Innenwiderstand umgerechnet werden. Dann kann I_3 direkt bestimmt werden. Ähnlich wie schon auf der linken Seite können nun Teilspannungen und damit Ströme aus der Originalschaltung bestimmt werden.

Anstelle dieser Lösungsvariante möchte ich jedoch eine Lösung mit Hilfe des Maschenstromverfahrens vorstellen. Nebenstehend ist der von mir verwendete Baum dargestellt. Der vollständige Baum sollte auf jeden Fall durch U_{02} verlaufen, da hier



eine Spannungsquelle ohne Vorwiderstand liegt. Den übrigen Teil des Baumes lege ich so, dass sich möglichst kleine Maschen ergeben. Ich erhalte nachfolgendes Gleichungssystem:

Ich setze in dieses Gleichungssystem die gegebenen Werte ein. Aus Vereinfachungsgründen werden alle Widerstände in k Ω und alle Spannungen in Volt eingesetzt, dann erhält man alle Ströme in Milliampere.

Es fällt auf, dass I_1 und I_2 ausschließlich in den ersten beiden Gleichungen vorkommen, die übrigen Ströme ausschließlich in den letzten drei Gleichungen. Hierin spiegelt sich das Verhalten der Schaltung wieder, das ich schon im Vorwort beschrieben habe, nämlich dass der linke und der rechte Teil der Schaltung unabhängig voneinander betrachtet werden können. Dadurch ist es möglich, zunächst mit den ersten beiden Gleichungen I_1 und I_2 zu bestimmen. Das sieht dann so aus:

Zur Lösung multipliziere ich Gleichung (1) mit 3 und Gleichung (2) mit 2. Dann können die Gleichungen addiert werden.

Ergebnis: $I_1 = 4 \text{ mA}$

Das Ergebnis setze ich in Gleichung (2) ein.

$$\begin{array}{rcl}
-2 \cdot I_1 + 3 \cdot I_2 & = & -5 \\
-2 \cdot 4 + 3I_2 & = & -5 \\
-8 + 3I_2 & = & -5 & | -8 \\
3I_2 & = & 3 & | : 3 \\
I_2 & = & 1
\end{array}$$

Ergebnis: $I_2 = 1 \,\mathrm{mA}$

Nun können wir uns um den Rest kümmern. Das ist jetzt ein Gleichungssystem 3. Ordnung.

Für die Lösung dieses Gleichungssystems verwende ich die Cramersche Regel.

$$I_{3} = \begin{vmatrix} 0 & 3 & 1.5 \\ -5 & 5 & 0 \\ 6 & 0 & 3 \end{vmatrix}$$

$$= \frac{\begin{vmatrix} 0.5 & 3 & 1.5 \\ 3 & 5 & 0 \\ 1.5 & 0 & 3 \end{vmatrix}}{\begin{vmatrix} 0.5 & 3 & 1.5 \\ 3 & 5 & 0 \\ 1.5 & 0 & 3 \end{vmatrix}}$$

$$= \frac{\begin{vmatrix} 0 & -45 + 45 \\ 97.5 - 11.25 - 27 \end{vmatrix}}{\begin{vmatrix} 0 & 59.25 \\ 13 & 0 \end{vmatrix}}$$

$$I_{3} = 0$$

Ergebnis: $I_3 = 0 \,\mathrm{mA}$

Das Ergebnis setze ich in Gleichung (7) ein.

$$3 \cdot I_3 + 5 \cdot I_7 = -5$$

 $3 \cdot 0 + 5 \cdot I_7 = -5$
 $5 \cdot I_7 = -5 \mid : 5$
 $I_7 = -1$

Ergebnis: $I_7 = -1 \,\mathrm{mA}$

Das Ergebnis für I_3 setze ich in Gleichung (8) ein.

$$\begin{array}{rcl} 1.5 \cdot I_3 + 3 \cdot I_8 & = & 6 \\ 1.5 \cdot 0 + 3 \cdot I_8 & = & 6 \\ 3 \cdot I_8 & = & 6 \\ I_8 & = & 2 \end{array} | : 3$$

Ergebnis: $I_8 = 2 \,\mathrm{mA}$

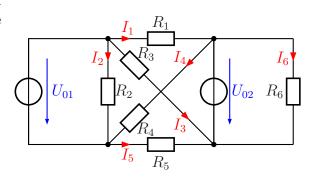
$$I_1 = 4 \,\mathrm{mA}$$
 $I_2 = 1 \,\mathrm{mA}$ $I_3 = 0 \,\mathrm{mA}$ $I_4 = 3 \,\mathrm{mA}$ $I_5 = 1 \,\mathrm{mA}$ $I_6 = 2 \,\mathrm{mA}$ $I_7 = -1 \,\mathrm{mA}$ $I_8 = 2 \,\mathrm{mA}$

7.1.3 Aufgabe 26

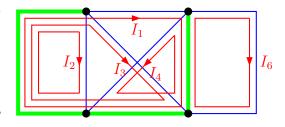
Bestimmen Sie die Ströme I_1 bis I_6 in nebenstehender Schaltung! Verwenden Sie dazu ein beliebiges Lösungsverfahren.

Bekannt sind folgende Werte:

$$egin{array}{ll} U_{01} = 8 \, \mathrm{V} & U_{02} = 4 \, \mathrm{V} \\ R_1 = 2 \, \mathrm{k} \Omega & R_2 = 4 \, \mathrm{k} \Omega & R_3 = 6 \, \mathrm{k} \Omega \\ R_4 = 6 \, \mathrm{k} \Omega & R_5 = 2 \, \mathrm{k} \Omega & R_6 = 8 \, \mathrm{k} \Omega \end{array}$$



Lösung: Für diese Aufgabe empfiehlt sich das Maschenstromverfahren. Den von mir gewählten Baum habe ich nebenstehend eingezeichnet. Er verläuft entprechend der allgemeinen Empfehlung durch die beiden Spannungsquellen. Allerdings kann man zuvor direkt schon die Ströme I_2 und I_6 berechnen, da sie unmittelbar an die Spannungsquellen U_{01}



und U_{02} angeschlossen sind. Für das eigentliche Maschenstromverfahren bleiben demnach nur die Ströme I_1 , I_3 und I_4 als Maschenströme übrig.

Vorab stelle ich – wie bereits erwähnt – die Maschengleichungen (2) und (6) auf, da sie direkt die Werte für I_2 und I_6 liefern. Beginnen wir mit Masche (2):

(2)
$$R_2 \cdot I_2 = U_{01}$$

 $4 \,\mathrm{k}\Omega \cdot I_2 = 8 \,\mathrm{V}$ | : $4 \,\mathrm{k}\Omega$
 $I_2 = 2 \,\mathrm{mA}$

Es folgt die Masche (6):

(6)
$$R_6 \cdot I_6 = U_{02}$$

 $8 \,\mathrm{k}\Omega \cdot I_6 = 4 \,\mathrm{V}$ | : $8 \,\mathrm{k}\Omega$
 $I_6 = 0.5 \,\mathrm{mA}$

Nun stelle ich die übrigen Maschengleichungen auf und erhalte nachfolgendes Gleichungssystem.

$$\begin{array}{|c|c|c|c|c|c|}\hline (1) & (R_1+R_5)\cdot I_1 & +R_5\cdot I_3 & -R_5\cdot I_4 & = & U_{01}-U_{02}\\ (3) & R_5\cdot I_1 & +(R_3+R_5)\cdot I_3 & -R_5\cdot I_4 & = & U_{01}\\ (4) & -R_5\cdot I_1 & -R_5\cdot I_3 & +(R_4+R_5)\cdot I_4 & = & U_{02} \\ \end{array}$$

Die konkreten Werte werden eingesetzt:

Dieses Gleichungssystem kann nun mit jedem beliebigen Lösungsverfahren gelöst werden. Hier möchte ich abwechslungshalber einmal das Additionsverfahren anwenden. Dazu dividiere ich Gleichung (1) durch 2.

(1)
$$2 k\Omega \cdot I_1 + 1 k\Omega \cdot I_3 - 1 k\Omega \cdot I_4 = 2 V$$

(3) $2 k\Omega \cdot I_1 + 8 k\Omega \cdot I_3 - 2 k\Omega \cdot I_4 = 8 V$
(4) $-2 k\Omega \cdot I_1 - 2 k\Omega \cdot I_3 + 8 k\Omega \cdot I_4 = 4 V$

Gleichung (4) kann zu Gleichung (1) und zu Gleichung (3) addiert werden. Man erhält dann ein Gleichungssystem 2. Ordnung.

Die letzte Gleichung kann durch 6 dividiert werden. Dann kann man die Gleichungen addieren.

Das Ergebnis setze ich in die letzte Gleichung (3+4) ein.

$$\begin{array}{rcl} 1 \, \mathrm{k}\Omega \cdot I_3 + 1 \, \mathrm{k}\Omega \cdot I_4 & = & 2 \, \mathrm{V} \\ 1 \, \mathrm{k}\Omega \cdot 1 \, \mathrm{mA} + 1 \, \mathrm{k}\Omega \cdot I_4 & = & 2 \, \mathrm{V} \\ 1 \, \mathrm{V} + 1 \, \mathrm{k}\Omega \cdot I_4 & = & 2 \, \mathrm{V} & | -1 \, \mathrm{V} \\ 1 \, \mathrm{k}\Omega \cdot I_4 & = & 1 \, \mathrm{V} & | : 1 \, \mathrm{k}\Omega \\ I_4 & = & 1 \, \mathrm{mA} \end{array}$$

Beide Ergebnisse setze ich in Gleichung (1) ein.

$$4 k\Omega \cdot I_{1} + 2 k\Omega \cdot I_{3} - 2 k\Omega \cdot I_{4} = 4 V$$

$$4 k\Omega \cdot 1 mA + 2 k\Omega \cdot 1 mA - 2 k\Omega \cdot I_{4} = 4 V$$

$$4 V + 2 V - 2 k\Omega \cdot I_{4} = 4 V$$

$$6 V - 2 k\Omega \cdot I_{4} = 4 V \quad |-6 V|$$

$$-2 k\Omega \cdot I_{4} = -2 V \quad |: (-2 k\Omega)$$

$$I_{4} = 1 mA$$

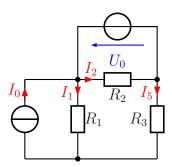
$$I_1 = 1 \text{ mA}$$
 $I_2 = 2 \text{ mA}$ $I_3 = 1 \text{ mA}$
 $I_4 = 1 \text{ mA}$ $I_5 = -1 \text{ mA}$ $I_6 = 0.5 \text{ mA}$

7.1.4 Aufgabe 27

Bestimmen Sie die Ströme I_1 bis I_6 in nebenstehender Schaltung! Verwenden Sie dazu ein beliebiges Lösungsverfahren.

Bekannt sind folgende Werte:

$$I_0 = 10 \,\text{mA}$$
 $U_0 = 10 \,\text{V}$ $R_1 = 1 \,\text{k}\Omega$ $R_2 = 1 \,\text{k}\Omega$ $R_3 = 3 \,\text{k}\Omega$

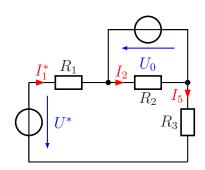


Lösung: Zur Lösungsstrategie gibt es mehrere grundsätzlich unterschiedliche Ansätze.

- 1. Mit Umwandlung der Stromquelle in Spannungsquelle und einfache Anwendung der Kirchhoffschen Regeln
- 2. Mit dem Überlagerungssatz (ohne Umwandlung der Stromquelle in eine Spannungsquelle)
- 3. Mit dem Maschenstromverfahren (mit Umwandlung der Stromquelle in eine Spannungsquelle)

Die Verwendung des Maschenstromverfahrens ist allerdings hier wie mit Kanonen auf Spatzen geschossen – viel Aufwand also, aber es funktioniert, wenn einem nichts Besseres einfällt.

Ich verwende die erste Lösungsstrategie für die Musterlösung. Dazu muss zuerst die Stromquelle mit I_0 und R_1 in eine Spannungsquelle umgewandelt werden. Nebenstehend ist die Schaltung mit der Umwandlung dargestellt. Der Widerstand behält dabei bekanntlich seinen Wert, die Ersatzspannung U^* muss berechnet werden.



$$U^* = R_1 \cdot I_0 = 1 \,\mathrm{k}\Omega \cdot 10 \,\mathrm{mA} = 10 \,\mathrm{V}$$

Man muss sich darüber im klaren sein, dass der Strom I_1^* in R_1 in der Ersatzschaltung **nicht** identisch ist mit dem Strom I_1 in der Originalschaltung. Deshalb habe ich ihm einen anderen Namen gegeben. Aufgrund der Kirchhoffschen Maschenregel ist $I_1^* = I_3$. Mit einem einzigen Maschenumlauf kann jetzt I_3 bestimmt werden. Ich beginne den Maschenumlauf am linken Ende von R_1 im Uhrzeigersinn.

$$R_1 \cdot I_3 - U_0 + R_3 \cdot I_3 - U^* = 0 \qquad | + U_0 + U^*$$
 $(R_1 + R_3) \cdot I_3 = U_0 + U^*$
 $4 \,\mathrm{k}\Omega \cdot I_3 = 20 \,\mathrm{V} \qquad | : 4 \,\mathrm{k}\Omega$
 $I_3 = \frac{20 \,\mathrm{V}}{4 \,\mathrm{k}\Omega}$
 $I_3 = 5 \,\mathrm{mA}$

Der Strom I_2 ergibt sich unmittelbar aus dem Ohmschen Gesetz an R_2 .

$$I_2 = \frac{-U_0}{R_2} = \frac{-10 \text{ V}}{1 \text{ k}\Omega} = -10 \text{ mA}$$

Zur Bestimmung von I_1 müssen wir zurück in die Originalschaltung. Am Knoten unter R_1 gilt die Kirchhoffsche Knotenregel.

$$I_1 + I_3 - I_0 = 0$$
 $|-I_3 + I_0|$
 $I_1 = -I_3 + I_0$
 $I_1 = -5 \,\text{mA} + 10 \,\text{mA}$
 $I_1 = 5 \,\text{mA}$

$$I_1 = 5 \,\text{mA}$$
 $I_2 = -10 \,\text{mA}$ $I_3 = 5 \,\text{mA}$

7.1.5 Aufgabe 28

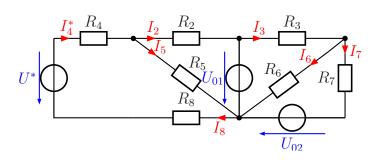
Bestimmen Sie die Ströme I_1 bis I_8 in nebenstehender Schaltung! Verwenden Sie dazu ein beliebiges Lösungsverfahren.

 I_{0} I_{1} I_{1} I_{2} I_{2} I_{3} I_{3} I_{3} I_{6} I_{7} I_{8} I_{8} I_{10} I_{1

Bekannt sind folgende Werte:

$$I_0 = 3 \,\mathrm{mA}$$
 $U_{01} = 12 \,\mathrm{V}$ $U_{02} = 15 \,\mathrm{V}$ $R_1 = 5 \,\mathrm{k}\Omega$ $R_2 = 1 \,\mathrm{k}\Omega$ $R_3 = 3 \,\mathrm{k}\Omega$ $R_4 = 13 \,\mathrm{k}\Omega$ $R_5 = 1.8 \,\mathrm{k}\Omega$ $R_6 = 3 \,\mathrm{k}\Omega$ $R_7 = 3 \,\mathrm{k}\Omega$ $R_8 = 2 \,\mathrm{k}\Omega$

Lösung: Hier gibt es mehrere Lösungsmöglichkeiten. Zunächst einmal können die beiden Schaltungsteile links und rechts von U_{01} separat voneinander betrachtet werden, da beide direkt an diese Spannungsquelle angeschlossen sind und sich daher nicht beeinflussen. Es ist für die meisten Lösungsverfahren sinn-



voll, die Stromquelle in eine Spannungsquelle umzurechnen. Dabei entfällt der Widerstand R_1 ersatzlos, denn der Strom aus der Stromquelle fließt unbeeindruckt von R_1 . Zu beachten ist, dass der Strom I_4^* in dieser Ersatzschaltung nicht identisch ist mit dem Strom I_4 aus der Originalschaltung. Obenstehend ist die sich ergebende Schaltung dargestellt.

Die Widerstände R_4 und R_8 können zu einem einzigen zusammengefasst werden mit $R_{48} = R_4 + R_8 = 15 \text{ k}\Omega$. Für die weitere Vorgehensweise sind jetzt für beide Schaltungsteile unabhängig voneinander mehrere Varianten denkbar.

Linker Schaltungsteil

- Man kann den Überlagerungssatz anwenden. Das wäre allerdings auch ohne die Umrechnung der Stromquelle möglich gewesen.
- Man kann beide Spannungsquellen (U^* und U_{01}) in Stromquellen umwandeln. Auf den ersten Blick klingt das absurd, wurde doch gerade die gegebene Stromquelle in eine Spannungsquelle umgerechnet. Verwendet man für U^* die **Summe der**

beiden Widerstände $R_{48} = R_4 + R_8$ als Innenwiderstand, dann erhält man letztlich eine reine Parallelschaltung aus drei Widerständen und zwei Stromquellen und kann damit sofort U_5 und damit I_5 bestimmen.

• Man kann das Maschenstromverfahren verwenden.

Rechter Schaltungsteil

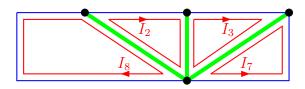
- Auch im rechten Teil kann der Überlagerungssatz angewendet werden.
- Auch im rechten Teil ist es sinnvoll, beide Spannungsquellen in Stromquellen umzuwandeln. Analog zum linken Teil erhält man hier zunächst I_6 .
- Man kann das Maschenstromverfahren verwenden.

Beginnen wir mit der Umrechnung der Stromquelle in eine Spannungsquelle. Der Widerstand R_4 bleibt erhalten, die Spannung ergibt sich aus dem Ohmschen Gesetz.

$$U^* = R_4 \cdot I_0 = 13 \,\mathrm{k}\Omega \cdot 3 \,\mathrm{mA} = 39 \,\mathrm{V}$$

Für die Lösung, die ich vorstellen möchte, verwende ich das Maschenstromverfahren. Ich stelle das Gleichungssystem ohne Aufspaltung nach linkem und rechtem Schaltungsteil auf, auch wenn das ohne weiteres möglich wäre.

Nebenstehend ist der von mir verwendete Baum dargestellt. Dabei beziehe ich mich auf die Schaltung mit Umwandlung von I_0 in U^* . Da die Spannung U_{01} als einzige ohne Innenwiderstand vorkommt, lege ich den Baum dort hindurch. Es ergibt sich nachfolgendes Gleichungssystem:



Die Werte werden eingesetzt. Damit erhält man dieses Gleichungssystem:

Zur Abwechslung möchte ich diesmal das Gauß-Verfahren² zur Lösung verwenden. Die Einheiten lasse ich dabei weg, damit die eigentliche Rechnung einfacher und übersichtlicher wird. Alle Widerstände werden in Kiloohm und die Spannungen in Volt eingetragen, dann ergeben sich die Ströme in Milliampere.

In Gleichung (8) muss vorn eine Null entstehen. Dazu multipliziere ich Gleichung (2) mit 1,8 und Gleichung (8) mit 2,8. Dann kann Gleichung (2) zu Gleichung (8) hinzuaddiert werden.

Jetzt addiere ich wie angesprochen Gleichung (2) zu Gleichung (8). Wir erhalten vorn in Gleichung (8) die gewünschte Null.

Nun muss die -3 in Gleichung (7) zu einer Null werden. Dazu addiere ich die Hälfte von Gleichung (3) zu Gleichung (7).

²Das Gauß-Verfahren ist eine schematisierte und systematisierte Abwandlung des Additions-/Subtraktionsverfahrens. Nach der Einführung durch Carl Friedrich Gauß wurde es später durch Wilhem Jordan noch weiter verfeinert, so dass es sich dadurch (unter dem Namen Gauß-Jordan-Verfahren) als Grundlage zur Erstellung eines Rechenprogramms eignet. Hier verwende ich aber nur das ursprüngliche Verfahren von Gauß. Einzelheiten dazu siehe auch hier: http://www.dk4ek.de/lib/exe/fetch.php/gauss.pdf

Damit kann das Gleichungssystem nun aufgelöst werden. Beginnen wir mit der letzten Gleichung:

$$43.8 \,\mathrm{k}\Omega \cdot I_8 = 87.6 \,\mathrm{V} \,\,|: 43.8 \,\mathrm{k}\Omega$$

 $I_8 = 2 \,\mathrm{mA}$

Auch Gleichung (7) liefert sofort ein Ergebnis:

$$4.5 \,\mathrm{k}\Omega \cdot I_7 = -9 \,\mathrm{V} \ |: 4.5 \,\mathrm{k}\Omega$$
 $I_7 = -2 \,\mathrm{mA}$

Weiter geht es mit Gleichung (3). Hier muss der eben gefundene Wert von I_7 eingesetzt werden.

$$6 k\Omega \cdot I_{3} - 3 k\Omega \cdot I_{7} = 12 V$$

$$6 k\Omega \cdot I_{3} - 3 k\Omega \cdot (-2 mA) = 12 V$$

$$6 k\Omega \cdot I_{3} + 6 V = 12 V \quad | -6 V$$

$$6 k\Omega \cdot I_{3} = 6 V \quad | :6 k\Omega$$

$$I_{3} = 1 mA$$

In Gleichung (2) wird der Wert von I_8 eingesetzt.

$$\begin{array}{rclcrcl} 5.04 \, \mathrm{k}\Omega \cdot I_2 - 3.24 \, \mathrm{k}\Omega \cdot I_8 & = & -21.6 \, \mathrm{V} \\ 5.04 \, \mathrm{k}\Omega \cdot I_2 - 3.24 \, \mathrm{k}\Omega \cdot 2 \, \mathrm{mA} & = & -21.6 \, \mathrm{V} \\ 5.04 \, \mathrm{k}\Omega \cdot I_2 - 6.48 \, \mathrm{V} & = & -21.6 \, \mathrm{V} & | + 6.48 \, \mathrm{V} \\ 5.04 \, \mathrm{k}\Omega \cdot I_2 & = & -15.12 \, \mathrm{V} & | : 5.04 \, \mathrm{k}\Omega \\ I_2 & = & -3 \, \mathrm{mA} \end{array}$$

Damit ist das Gleichungssystem gelöst. Jetzt werden die übrigen Ströme bestimmt. Dazu bleiben wir zunächst in der Ersatzschaltung.

Im dem Maschenstrombild sieht man, wie I_5 durch I_8 und I_2 gebildet wird:

$$I_5 = I_8 - I_2 = 2 \,\text{mA} - (-3 \,\text{mA}) = 5 \,\text{mA}$$

Ebenso ist der Zusammenhang zwischen I_6 , I_3 und I_7 erkennbar:

$$I_6 = I_3 - I_7 = 1 \,\text{mA} - (-2 \,\text{mA}) = 3 \,\text{mA}$$

Für die Bestimmung von I_1 und I_4 müssen wir die Ersatzschaltung verlassen und mit der ursprünglichen Gleichung weitermachen. Sofort ist klar (Reihenschaltung), dass gelten muss:

$$I_1 = I_0 = 3 \,\mathrm{mA}$$

 I_4 kann beispielsweise am Knoten unterhalb von R_4 über die Knotenregel bestimmt werden:

$$I_4 + I_8 - I_0 = 0 | + I_0 - I_8$$

 $I_4 = I_0 - I_8$
 $I_4 = 3 \text{ mA} - 2 \text{ mA}$
 $I_4 = 1 \text{ mA}$

$I_1 = 3 \mathrm{mA}$	$I_2 = -3 \mathrm{mA}$	$I_3 = 1 \mathrm{mA}$	$I_4 = 1 \mathrm{mA}$
$I_5 = 5 \mathrm{mA}$	$I_6 = 3 \mathrm{mA}$	$I_7 = -2 \mathrm{mA}$	$I_8 = 2 \mathrm{mA}$

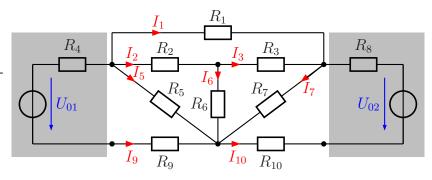
7.1.6 Aufgabe 29

Bestimmen Sie die Ströme I_1 bis I_{10} in nebenstehender Schaltung! Verwenden Sie dazu ein beliebiges Lösungsverfahren.

Bekannt sind die nachfolgenden Widerstands- und Strom-Werte:

$$I_{01} = 10 \,\mathrm{mA}$$
 $I_{02} = 20 \,\mathrm{mA}$ $R_1 = 2 \,\mathrm{k}\Omega$ $R_2 = 1 \,\mathrm{k}\Omega$ $R_3 = 2.5 \,\mathrm{k}\Omega$ $R_4 = 2.8 \,\mathrm{k}\Omega$ $R_5 = 4 \,\mathrm{k}\Omega$ $R_6 = 1.8 \,\mathrm{k}\Omega$ $R_7 = 7 \,\mathrm{k}\Omega$ $R_8 = 1 \,\mathrm{k}\Omega$ $R_9 = 400 \,\Omega$ $R_{10} = 200 \,\Omega$

Lösung: Bei dieser doch recht komplexen Schaltung empfiehlt sich aus meiner Sicht das Maschenstromverfahren. Dazu ist es erforderlich, dass man zunächst beide Stromquellen in Spannungsquellen umwandelt. Dabei wird R_4 zum Innenwiderstand der



 R_0

 R_3

Stromquelle I_{01} und R_8 zu der von I_{02} . Man erhält dann die nebenstehend dargestellte Schaltung. Die grau markierten Schaltungsteile stellen die umgewandelten Stromquellen dar. Beim Aufstellen der Maschenströme muss man darauf achten, dass hierfür ausschließlich Ströme aus dem **nicht umgewandelten Bereich** verwendet werden. Ich möchte an dieser Stelle noch einmal ausdrücklich darauf hinweisen, dass in der umgewandelten Schaltung in R_4 **nicht** der Strom I_4 und in R_8 **nicht** der Strom I_8 aus der Originalschaltung fließt!

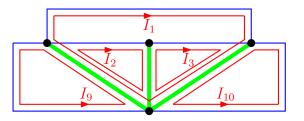
 R_4

Bestimmen wir zunächst die Ersatzspannungen U_{01} und U_{02} . Sie stellen die Leerlaufspannungen der Stromquellen I_{01} und I_{02} mit den zugehörigen Innenwiderständen R_4 und R_8 dar.

$$U_{01} = R_4 \cdot I_{01} = 2.8 \,\mathrm{k}\Omega \cdot 10 \,\mathrm{mA} = 28 \,\mathrm{V}$$

 $U_{02} = R_8 \cdot I_{02} = 1 \,\mathrm{k}\Omega \cdot 20 \,\mathrm{mA} = 20 \,\mathrm{V}$

Zur Lösung sind natürlich wieder verschiedene Bäume möglich. Eine günstige Möglichkeit, mit der kurze Maschen möglich sind, ist nenebstehend dargestellt. Wir erhalten damit 5 Maschengleichungen mit den Maschenströmen I_1 , I_2 , I_3 , I_9 und I_{10} . Alle diese Ströme kommen auch unverändert in



der Originalschaltung vor. Wir können jetzt die Maschengleichungen aufstellen.

Aus Platzgründen lasse ich beim Einsetzen der Werte die Einheiten weg. Spannungen werden in Volt und Widerstände in Kiloohm eingesetzt, dann ergeben sich die Ströme in Milliampere. Damit ergibt sich das nachfolgende Gleichungssystem.

Dieses Gleichungssystem kann mit einem beliebigen Verfahren³ gelöst werden. Man erhält diese Ergebnisse:

$$I_1 = -1 \,\text{mA}$$
 $I_2 = 3 \,\text{mA}$ $I_3 = -2 \,\text{mA}$ $I_9 = -5 \,\text{mA}$ $I_{10} = 5 \,\text{mA}$

Die noch fehlenden Ströme I_5 , I_6 und I_7 können direkt aus dem Maschenplan bestimmt werden.

$$I_5 = -I_1 - I_2 - I_9 = -(-1 \text{ mA}) - 3 \text{ mA} - (-5 \text{ mA}) = 3 \text{ mA}$$

$$I_6 = I_2 - I_3 = 3 \text{ mA} - (-2 \text{ mA}) = 5 \text{ mA}$$

$$I_7 = I_1 + I_3 + I_{10} = -1 \text{ mA} - 2 \text{ mA} + 5 \text{ mA} = 2 \text{ mA}$$

Zur Berechnung der Ströme I_4 und I_8 müssen wir die Ersatzschaltung wieder verlassen und zur Originalschaltung zurückkehren, denn in der Ersatzschaltung kommen diese Ströme nicht vor. Stellen wir die Knotengleichung am linken oberen Knoten auf, wo sich die Widerstände R_1 , R_2 , R_4 und R_5 treffen:

$$\begin{array}{rcl} I_{01} & = & I_1 + I_2 + I_4 + I_5 \\ I_4 & = & I_{01} - I_1 - I_2 - I_5 \\ I_4 & = & 10 \,\mathrm{mA} - (-1 \,\mathrm{mA}) - 3 \,\mathrm{mA} - 3 \,\mathrm{mA} \\ I_4 & = & 5 \,\mathrm{mA} \end{array}$$

³Einzelheiten zur Lösungsverfahren findet man beispielsweise hier: http://www.dk4ek.de/lib/exe/fetch.php/lingl.pdf

Anmerkung: Alternativ wäre auch zur Berechnung der Knoten unter R_4 möglich gewesen. Dort erhielten wir:

$$I_4 = I_{01} + I_9 = 10 \,\mathrm{mA} - (-5 \,\mathrm{mA}) = 5 \,\mathrm{mA}$$

Zur Berechnung von I_8 kann der Knoten über oder auch der Knoten unter R_8 verwendet werden. Ich wähle den unteren Knoten, denn dort fließen weniger Ströme zusammen.

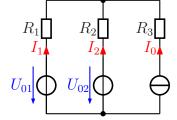
$$I_8 = I_{02} - I_{10} = 20 \,\mathrm{mA} - 5 \,\mathrm{mA} = 15 \,\mathrm{mA}$$

$I_1 = -1 \mathrm{mA}$	$I_2 = 3 \mathrm{mA}$	$I_3 = -2 \mathrm{mA}$	$I_4 = 5 \mathrm{mA}$	$I_5 = 3 \mathrm{mA}$
$I_6 = 5 \mathrm{mA}$	$I_7 = 2 \mathrm{mA}$	$I_8 = 15 \mathrm{mA}$	$I_9 = -5 \mathrm{mA}$	$I_{10} = 5 \mathrm{mA}$

7.1.7 Aufgabe 30

Gegeben ist nebenstehende Schaltung mit folgenden Werten:

$$R_1 = 500 \,\Omega$$
 $U_{01} = 4 \,\mathrm{V}$
 $R_2 = 2 \,\mathrm{k}\Omega$ $U_{02} = 14 \,\mathrm{V}$
 $R_3 = 4 \,\mathrm{k}\Omega$ $I_0 = 10 \,\mathrm{mA}$



Bestimmen Sie die Ströme I_1 und I_2 mit einem beliebigen Lösungsverfahren!

Lösung: Man könnte auf die Idee kommen, die Stromquelle in eine Spannungsquelle umzuwandeln. Das ist aber nicht möglich, weil die Stromquelle keinen Parallelwiderstand hat, der sich als Innenwiderstand interpretieren lässt. Damit scheidet das Maschenstromverfahren als Lösungsmethode aus. Man kann aber beide Spannungsquellen in Stromquellen umwandeln, wenn man das möchte. Damit erhalten wir zwei mögliche Lösungsverfahren:

- Lösung mit dem Überlagerungssatz
- Lösung durch Umwandeln der Spannungsquellen in Stromquellen

Da beide Lösungswege einfach und auch sinnvoll sind, möchte ich beide vorstellen.

Lösungsvariante 1 mit Überlagerungssatz: Beim Lösen mit dem Überlagerungssatz ist immer nur eine Quelle aktiv, die anderen sind abgeschaltet.

Fall 1: nur U_{01} aktiv

Da die Stromquelle **hochohmig** ist, ist R_3 abgehängt. U_{01} speist nur die Reihenschaltung aus R_1 und R_2 .

$$I_{11} = \frac{U_{01}}{R_1 + R_2} = \frac{4 \text{ V}}{500 \Omega + 2 \text{ k}\Omega} = 1,6 \text{ mA}$$

$$I_{21} = -I_{11} = -1,6 \text{ mA}$$

Fall 2: nur U_{02} aktiv

Hier speist U_{02} die Reihenschaltung aus R_1 und R_2 .

$$I_{22} = \frac{U_{02}}{R_1 + R_2} = \frac{14 \text{ V}}{500 \Omega + 2 \text{ k}\Omega} = 5.6 \text{ mA}$$
$$I_{12} = -I_{22} = -5.6 \text{ mA}$$

Fall 3: nur I_0 aktiv

Der Strom I_0 fließt durch die Parallelschaltung $R_1 \parallel R_2$. Der Widerstand R_3 beeinflusst ihn dabei nicht.

$$\begin{split} R_{12} &= \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{500 \,\Omega \cdot 2 \,\mathrm{k}\Omega}{500 \,\Omega + 2 \,\mathrm{k}\Omega} = 400 \,\Omega \\ U_1 &= R_{12} \cdot I_0 = 400 \,\Omega \cdot 10 \,\mathrm{mA} = 4 \,\mathrm{V} \\ I_{13} &= -\frac{U_1}{R_1} = -\frac{4 \,\mathrm{V}}{500 \,\Omega} = -8 \,\mathrm{mA} \\ I_{23} &= -\frac{U_1}{R_2} = -\frac{4 \,\mathrm{V}}{2 \,\mathrm{k}\Omega} = -2 \,\mathrm{mA} \end{split}$$

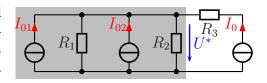
Die Teilströme für alle drei Fälle sind bekannt und können addiert werden.

$$I_1 = I_{11} + I_{12} + I_{13} = 1.6 \,\mathrm{mA} - 5.6 \,\mathrm{mA} - 8 \,\mathrm{mA} = -12 \,\mathrm{mA}$$

$$I_2 = I_{21} + I_{22} + I_{23} = -1.6 \,\mathrm{mA} + 5.6 \,\mathrm{mA} - 2 \,\mathrm{mA} = 2 \,\mathrm{mA}$$

Zusammengefasste Ergebnisse: $I_1 = -12 \,\mathrm{mA}$ und $I_2 = 2 \,\mathrm{mA}$

Lösungsvariante 2 mit Spannungsquellenumrechnung: Die Spannungsquelle U_{01} wird mit R_1 und die Spannungsquelle U_{02} mit R_2 jeweils zu einer Stromquelle I_{01} bzw. I_{02} umgewandelt. Die Umwandlungen liegen in dem grau unterlegten Bereich. Diese Ströme werden berechnet.



$$I_{01} = \frac{U_{01}}{R_1} = \frac{4 \text{ V}}{500 \,\Omega} = 8 \,\text{mA}$$

$$I_{02} = \frac{U_{02}}{R_2} = \frac{14 \text{ V}}{2 \text{ k}\Omega} = 7 \text{ mA}$$

Hierdurch haben wir **drei** Stromquellen, die die Parallelschaltung aus R_1 und R_2 speist. R_3 ist dabei ohne Belang, weil er in Reihe zur Stromquelle I_0 liegt. Diese Parallelschaltung kann berechnet werden:

$$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{500 \,\Omega \cdot 2 \,\mathrm{k}\Omega}{500 \,\Omega + 2 \,\mathrm{k}\Omega} = 400 \,\Omega$$

Hierbei ist zu beachten, dass nur Spannungen und Ströme **außerhalb** des umgewandelten Bereiches mit denen in der Originalschaltung übereinstimmen. Hier ist dies nur die Spannung, die ich mit U^* bezeichnet habe. Das ist die Spannung an der Parallelschaltung aus R_1 und R_2 .

$$U^* = R_{12} \cdot (I_{01} + I_{02} + I_0) = 400 \,\Omega \cdot (8 \,\text{mA} + 7 \,\text{mA} + 10 \,\text{mA}) = 10 \,\text{V}$$

Mit dieser Spannung können wir nun zurückgehen in die ursprüngliche Schaltung. Über die Maschenumläufe $U^*-U_{01}-R_1$ bzw. $U^*-U_{02}-R_2$ können die Ströme I_1 und I_2 an R_1 und R_2 bestimmt werden.

$$I_1 = \frac{U_1}{R_1} = \frac{U_{01} - U^*}{R_1} = \frac{4 \text{ V} - 10 \text{ V}}{500 \,\Omega} = -12 \text{ mA}$$

$$I_2 = \frac{U_2}{R_2} = \frac{U_{02} - U^*}{R_2} = \frac{14 \,\mathrm{V} - 10 \,\mathrm{V}}{1 \,\mathrm{k}\Omega} = 2 \,\mathrm{mA}$$

Zusammengefasste Ergebnisse: $I_1 = -12 \,\mathrm{mA}$ und $I_2 = 2 \,\mathrm{mA}$

7.1.8 Aufgabe 31

Gegeben ist nebenstehende Schaltung mit folgenden Werten:

$$R_1 = 500 \,\Omega \qquad U_{01} = 9 \,\mathrm{V}$$

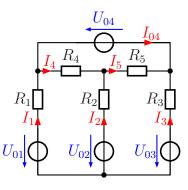
$$R_2 = 1 \,\mathrm{k}\Omega \qquad U_{02} = 2 \,\mathrm{V}$$

$$R_3 = 2 \,\mathrm{k}\Omega \qquad U_{03} = 6 \,\mathrm{V}$$

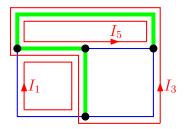
$$R_4 = 500 \,\Omega \qquad U_{04} = 6 \,\mathrm{V}$$

$$R_5 = 7 \,\mathrm{k}\Omega$$

Berechnen Sie die Ströme $I_1,\,I_2,\,I_3,\,I_4,\,I_5$ und I_{04} mit einem beliebigen Lösungsverfahren!



Lösung: Wir haben keine Stromquellen, sondern ausschließlich Spannungsquellen. Deshalb bietet sich das Maschenstromverfahren an. In einer Schaltung mit vier Quellen wäre zudem die Anwendung des Überlagerungssatzes recht aufwändig.



Nebenstehend ist einer von mehreren möglichen geeigneten Maschenplänen mit einem vollständigen Baum dargestellt. Damit können die Maschengleichungen aufgestellt werden.

(1)
$$(R_1 + R_4 + R_2) \cdot I_1$$
 $+(R_4 + R_2) \cdot I_3$ $+R_4 \cdot I_5 = U_{01} - U_{02}$
(3) $(R_4 + R_2) \cdot I_1$ $+(R_4 + R_2 + R_3) \cdot I_3$ $+R_4 \cdot I_5 = U_{03} - U_{02} - U_{04}$
(5) $R_4 \cdot I_1$ $+R_4 \cdot I_3$ $+(R_4 + R_5) \cdot I_5 = -U_{04}$

Zur Vereinfachung werden bei der Rechnung die Einheiten weggelassen. Beim Einsetzen werden die Widerstände in Kiloohm und die Spannungen in Volt eingesetzt, dann erhalten wir die Ströme in Milliampere.

Dieses Gleichungssystem kann mit einem beliebigen Lösungsverfahren gelöst werden. Bei einem System 3. Ordnung bietet sich die Cramersche Regel⁴ an. Hiermit bestimme ich I_1 und I_3 .

⁴Einzelheiten zur Cramerschen Regel findet man beispielsweise hier: http://www.dk4ek.de/lib/exe/fetch.php/cramer.pdf

$$I_{1} = \frac{\begin{vmatrix} 7 & 1.5 & 0.5 \\ -2 & 3.5 & 0.5 \\ -6 & 0.5 & 7.5 \end{vmatrix}}{\begin{vmatrix} 2 & 1.5 & 0.5 \\ 1.5 & 3.5 & 0.5 \\ 0.5 & 0.5 & 7.5 \end{vmatrix}} = \frac{183,75 - 4.5 - 0.5 + 10.5 - 1.75 + 22.5}{52,5 + 0.375 + 0.375 - 0.875 - 0.5 - 16.875} = \frac{210}{35} = 6$$

$$I_{3} = \frac{\begin{vmatrix} 2 & 7 & 0.5 \\ 1.5 & -2 & 0.5 \\ 0.5 & -6 & 7.5 \end{vmatrix}}{\begin{vmatrix} 2 & 1.5 & 0.5 \\ 1.5 & 3.5 & 0.5 \\ 0.5 & 0.5 & 7.5 \end{vmatrix}} = \frac{-30 + 1.75 - 4.5 + 0.5 + 6 - 78.75}{35} = \frac{-105}{35} = -3$$

 I_5 bestimme ich durch Einsetzen in Gleichung (1).

$$\begin{array}{rclcrcl} 2 \cdot I_1 + 1.5 \cdot I_3 + 0.5 \cdot I_5 & = & 7 \\ 2 \cdot 6 + 1.5 \cdot (-3) + 0.5 \cdot I_5 & = & 7 \\ 12 - 4.5 + 0.5 \cdot I_5 & = & 7 & | -7.5 \\ 0.5 \cdot I_5 & = & -0.5 & | \cdot 2 \\ I_5 & = & -1 \end{array}$$

Wir haben erhalten: $I_1 = 6 \,\mathrm{mA}$ $I_3 = -3 \,\mathrm{mA}$ $I_5 = -1 \,\mathrm{mA}$

Aus dem Maschenplan ergeben sich die übrigen Ströme.

$$I_2 = -I_1 - I_3 = -6 \,\text{mA} + 3 \,\text{mA} = -3 \,\text{mA}$$

$$I_4 = I_1 + I_3 + I_5 = 6 \,\text{mA} - 3 \,\text{mA} - 1 \,\text{mA} = 2 \,\text{mA}$$

$$I_{04} = -I_3 - I_5 = 3 \,\text{mA} + 1 \,\text{mA} = 4 \,\text{mA}$$

Hier sind die zusammengefassten Ergebnisse:

$$I_1 = 6 \text{ mA}$$
 $I_2 = -3 \text{ mA}$ $I_3 = -3 \text{ mA}$ $I_4 = 2 \text{ mA}$ $I_5 = -1 \text{ mA}$ $I_{04} = 4 \text{ mA}$