Algebra-Aufgaben zur Wiederholung

W. Kippels

25. Februar 2014

Inhaltsverzeichnis

1	Auf	gaben																	
	1.1	Aufgal	oe 1																
	1.2	Aufgal	oe 2																
		1.2.1	Aufgabe 2a																
		1.2.2	Aufgabe 2b																
		1.2.3	Aufgabe 2c																
		1.2.4	Aufgabe 2d																
		1.2.5	Aufgabe 2e																
2	2 Lösungen 2.1 Aufgabe 1																		
		Auigai	oe 1	• •					•		 •	 •	 •	•	•	 •	٠	•	•
	2.2		pe 2																
		2.2.1	Aufgabe 2a																
		2.2.2	Aufgabe 2b																
		2.2.3	Aufgabe 2c																
		2.2.4	Aufgabe 2d																
		2.2.5	Aufgabe 2e																

1 Aufgaben

1.1 Aufgabe 1

Nachfolgender Term soll so weit wie möglich vereinfacht werden!

$$\frac{6a^2b^3c - 4ab^3c^2}{3abc - 2bc^2} = \dots$$

1.2 Aufgabe 2

Nachfolgende Terme sollen so weit wie möglich vereinfacht werden!

1.2.1 Aufgabe 2a

$$\frac{a^2 + 2ab + b^2}{a+b} = \dots$$

1.2.2 Aufgabe 2b

$$\frac{a^2 - 2ab + b^2}{a - b} = \dots$$

1.2.3 Aufgabe 2c

$$\frac{a^2 - b^2}{a - b} = \dots$$

1.2.4 Aufgabe 2d

$$\frac{6a^2 - 12ab + 6b^2}{2a - 2b} = \dots$$

1.2.5 Aufgabe 2e

$$\frac{5x^4 - 20y^6}{x^2 + 2y^3} = \dots$$

2 Lösungen

2.1 Aufgabe 1

Nachfolgender Term soll so weit wie möglich vereinfacht werden!

$$\frac{6a^2b^3c - 4ab^3c^2}{3abc - 2bc^2} = \dots$$

Zunächst versucht man, im Zähler und im Nenner möglichst viel auszuklammern. Das geht hier mit $2ab^3c$ im Zähler und bc im Nenner.

Anschließend kann gekürzt werden.

$$\frac{6a^2b^3c - 4ab^3c^2}{3abc - 2bc^2} = \frac{2ab^3c \cdot (3a - 2c)}{bc \cdot (3a - 2c)} = 2ab^2$$

2.2 Aufgabe 2

Nachfolgende Terme sollen so weit wie möglich vereinfacht werden!

2.2.1 Aufgabe 2a

$$\frac{a^2 + 2ab + b^2}{a+b} = \dots$$

Im Zähler steckt die erste Binomische Formel. Damit wird umgeformt.

$$\frac{a^{2} + 2ab + b^{2}}{a + b} = \frac{(a + b)^{2}}{a + b}$$
$$\frac{a^{2} + 2ab + b^{2}}{a + b} = a + b$$

2.2.2 Aufgabe 2b

$$\frac{a^2 - 2ab + b^2}{a - b} = \dots$$

Im Zähler steckt die zweite Binomische Formel. Damit wird umgeformt.

$$\frac{a^2 - 2ab + b^2}{a - b} = \frac{(a - b)^2}{a - b}$$
$$\frac{a^2 - 2ab + b^2}{a - b} = a - b$$

2.2.3 Aufgabe 2c

$$\frac{a^2 - b^2}{a - b} = \dots$$

Im Zähler steckt die dritte Binomische Formel. Damit wird umgeformt.

$$\frac{a^2 - b^2}{a - b} = \frac{(a+b) \cdot (a-b)}{a - b}$$
$$\frac{a^2 - b^2}{a - b} = a + b$$

2.2.4 Aufgabe 2d

$$\frac{6a^2 - 12ab + 6b^2}{2a - 2b} = \dots$$

Hier kann im Zähler die 6 ausgeklammert werden. Danach lässt sich die zweite Binomische Formel anwenden. Auch im Nenner kann ausgeklammert werden, allerdings nur die 2. Anschließend wird gekürzt.

$$\frac{6a^2 - 12ab + 6b^2}{2a - 2b} = \frac{6 \cdot (a^2 - 2ab + b^2)}{2 \cdot (a - b)}$$

$$\frac{6a^2 - 12ab + 6b^2}{2a - 2b} = \frac{6 \cdot (a - b)^2}{2 \cdot (a - b)}$$

$$\frac{6a^2 - 12ab + 6b^2}{2a - 2b} = 3 \cdot (a - b)$$

$$\frac{6a^2 - 12ab + 6b^2}{2a - 2b} = 3a - 3b$$

2.2.5 **Aufgabe 2e**

$$\frac{5x^4 - 20y^6}{x^2 + 2y^3} = \dots$$

Hier kann im Zähler eine 5 ausgeklammert werden. Anschließend kann die dritte Binomische Formel angewendet werden.

$$\frac{5x^4 - 20y^6}{x^2 + 2y^3} = \frac{5 \cdot (x^4 - 4y^6)}{x^2 + 2y^3}
\frac{5x^4 - 20y^6}{x^2 + 2y^3} = \frac{5 \cdot (x^2 + 2y^3) \cdot (x^2 - 2y^3)}{x^2 + 2y^3}
\frac{5x^4 - 20y^6}{x^2 + 2y^3} = 5 \cdot (x^2 - 2y^3)
\frac{5x^4 - 20y^6}{x^2 + 2y^3} = 5x^2 - 10y^3$$