Stabilisierungsschaltung mit Längstransistor

Bestimmung des Innenwiderstandes

Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben:

 $U_E = 18 \,\mathrm{V}$

 $R_1 = 150 \,\Omega$

Für die Z-Diode gelten folgende Daten:

 $U_Z = 12.7 \, \text{V}$

 $r_Z = 2\Omega$

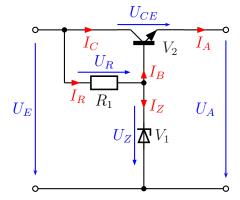
Für den Transistor gelten folgende Daten:

B = 120

 $U_{BE} = 0.7 \,\mathrm{V}$

 $r_B = 240 \,\Omega$

 $r_C = 200 \,\Omega$

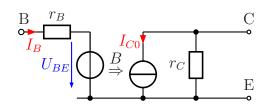


Diese Netzteilschaltung stellt eine Spannungsquelle mit Innenwiderstand dar. Bestimmen Sie den Innenwiderstand der Ersatzschaltung!

Lösung

Zweckmäßigerweise setzt man anstelle des Transistors und der Z-Diode die jeweilige Ersatzschaltung ein.

Nebenstehend ist die Ersatzschaltung eines Transistors dargestellt. Die Anschlüsse Basis, Kollektor und Emitter sind mit \mathbf{B} , \mathbf{C} und \mathbf{E} gekennzeichnet. Der Widerstand r_B stellt den Basis-Widerstand dar, die Spannung U_{BE} die Schleusenspannung des Basis-Emitter-PN-

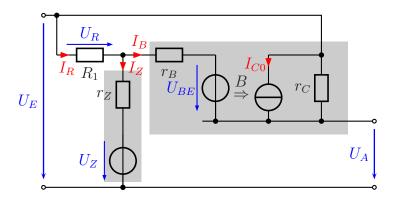


Ersatzschaltung eines Transistors

Übergangs. Dieser Teil der Ersatzschaltung entspricht der Ersatzschaltung einer Diode.

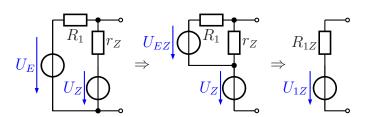
 I_{C0} ist eine gesteuerte Stromquelle, die über den Basisstrom und den Stromverstärkungsfaktor B gesteuert wird, also mit $I_{C0} = B \cdot I_B$. Der Widerstand r_C ist der Innenwiderstand dieser Stromquelle, die an der Steigung der Geraden im Ausgangskennlinienfeld des Transistors erkennbar ist.

Man erhält hiermit folgende Schaltung:



Die Ersatzschaltungen für Z-Diode und Transistor sind grau hinterlegt, damit sie besser im Zusammenhang erkennbar sind.

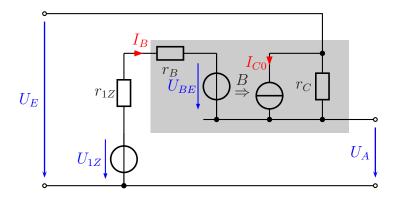
Die Schaltung kann nun schrittweise umgeformt werden. Als ersten Schritt bietet es sich an, den Spannungsteiler aus R_1 und r_Z zusam-



Umwandlung Ersatzschaltung

men mit U_Z und U_E in eine Spannungsquelle U_{1Z} mit Innenwiderstand R_{1Z} umzuformen, wie nebenstehend dargestellt ist. Dazu wird zunächst die Eingangsspannung U_E in zwei Teilspannungen zerlegt, nämlich in U_{EZ} und die bereits bekannte Spannung U_Z . Hiermit ist es jetzt möglich, den Spannungsteiler bestehend aus R_1 und r_Z zusamen mit der Hilfsspannung U_{EZ} umzuwandeln in eine neue Spannungsquelle mit Innenwiderstand.

Diese Umwandlung geschieht im zweiten Teilschritt. In der obenstehenden Skizze ist bereits die dabei aus U_{EZ} entstandene Ersatzspannung (nennen wir sie U_{rz}) mit der Spannungsquelle U_Z zu einer weiteren Hilfsspannung mit dem Namen U_{1Z} zusammengefasst worden. Baut man diese Umwandlung in die Gesamtschaltung ein, dann erhält man nachfolgende Schaltung.



Berechnen wir zuerst die Werte.

$$R_{1Z} = R_1 \parallel r_Z$$

$$= \frac{R_1 \cdot r_2}{R_1 + r_Z}$$

$$= \frac{150 \Omega \cdot 2 \Omega}{150 \Omega + 2 \Omega}$$

$$R_{1Z} = 1,974 \Omega$$

Schaut man sich die Widerstandswerte mit $R_1 = 150 \Omega$ und $r_Z = 2 \Omega$ an, dann sieht man schnell, dass in der Parallelschaltung R_1 vernachlässigbar ist. Es ist $R_{1Z} \approx r_Z$.

Die Spannung, die am Spannungsteiler aus R_1 und r_Z anliegt, nenne ich U_{EZ} . Sie besteht aus den Spannungen U_E und U_Z . Hierbei muss allerdings die Polung berücksichtigt werden. Sie liegt am Spannungsteiler von oben links bis unten an. Machen wir einen Maschenumlauf, beginnend oben links.

Diese Spannung wird mit dem Spannungsteiler aus R_1 und r_Z auf eine Spannung an r_Z heruntergeteilt, die ich U_{rz} nennen möchte.

$$U_{rz} = \frac{r_Z \cdot U_{EZ}}{r_Z + R_1}$$

$$U_{rz} = \frac{2\Omega \cdot 5.3 \text{ V}}{2\Omega + 150 \Omega}$$

$$U_{rz} = 69.7 \text{ mV}$$

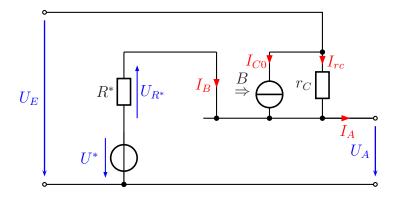
Die Ersatzspannung U_{1Z} setzt sich aus der Spannung U_Z und der eben bestimmten Spannung U_{rz} zusammen.

$$U_{1Z} = U_Z + U_{rz} = 12,7 \,\text{V} + 69,7 \,\text{mV} = 12,7697 \,\text{V}$$

Wie man sieht, kann hierin der Einfluss von U_{rz} vernachlässigt werden.

$$U_{1Z} \approx U_Z$$

Im nächsten Vereinfachungsschritt können nun die Spannungen U_{1Z} und U_{BE} zu einer einzigen Spannung zusammengefasst werden. Ich nenne diese Spannung U^* . Auch die Widerstände R_{1Z} und r_B können zu einem Widerstand zusammengefasst werden. Diesen Widerstand nenne ich R^* . Überträgt man das auf die Schaltung, sieht diese so aus, wie nachfolgend gezeigt.



Berechnen wir nun die Werte für U^* und R^* .

$$U^* = U_{1Z} - U_{BE} = 12,7697 \,\mathrm{V} - 0.7 \,\mathrm{V} = 12,0697 \,\mathrm{V}$$

Näherungsweise ist diese Spannung der Sollwert für U_A .

$$R^* = R_{1Z} + r_B = 1,974 \Omega + 240 \Omega = 241,974 \Omega$$

Dieser Widerstand ist in erster Näherung gleich dem Widerstand r_B .

Langsam nähern wir uns der Lösung der Frage: "Wie groß ist der Innenwiderstand R_i der Schaltung?" Zur Lösung dieser Frage gibt es (mindestens) zwei verschiedene Vorgehensweisen. Diese sind:

- 1. Man bestimmt für zwei (beliebige) unterschiedliche Belastungen die sich ergebende Ausgangsspannung und bestimmt über ΔU_A und ΔI_A den Innenwiderstand.
- 2. Man stellt "trickreiche" Überlegungen an.

Methode 1: Ich bestimme U_A für $I_{A1} = 1$ A und $I_{A2} = 2$ A. (Diese Werte wurden willkürlich gewählt.)

Der Strom I_A setzt sich aus drei Strömen zusammen:

$$I_A = I_B + I_{C0} + I_{rc}$$

Der Strom I_{rc} kann vorab einfach bestimmt werden, wenn man voraussetzt, dass die Ausgangsspannung zumindest nährungsweise konstant bei $U_A=12\,\mathrm{V}$ bleibt.

$$I_{rc} = \frac{U_E - U_A}{r_C} = \frac{18 \,\text{V} - 12 \,\text{V}}{200 \,\Omega} = 30 \,\text{mA}$$

Es ist bekannt, dass I_{C0} um den Stromverstärkungsfaktor B größer als I_B ist. Das setze ich in die obige Gleichung ein, um I_B zu berechnen.

$$I_{A} = I_{B} + I_{C0} + I_{rc}$$

$$I_{A} = I_{B} + B \cdot I_{B} + I_{rc} \mid -I_{rc}$$

$$I_{A} - I_{rc} = (1+B) \cdot I_{B} \mid : (1+B)$$

$$I_{B} = \frac{I_{A} - I_{rc}}{1+B}$$

Mit dieser Formel können wir nun die Basisströme I_{B1} und I_{B2} für die beiden Ausgangsströme $I_{A1} = 1$ A und $I_{A2} = 2$ A berechnen.

$$I_{B1} = \frac{1 \,\mathrm{A} - 30 \,\mathrm{mA}}{1 + 120} = 8,017 \,\mathrm{mA}$$

$$I_{B2} = \frac{2 A - 30 \text{ mA}}{1 + 120} = 16,281 \text{ mA}$$

Die Ausgangsspannung setzt sich aus der Spannung U^* und der Spannung zusammen. Daher bestimme ich jetzt die beiden Werte für U_{R^*1} und U_{R^*2} .

$$U_{R^*1} = R^* \cdot I_{B1} = 241,974 \,\Omega \cdot 8,017 \,\mathrm{mA} = 1,940 \,\mathrm{V}$$

$$U_{R^*2} = R^* \cdot I_{B2} = 241,974 \,\Omega \cdot 16,281 \,\mathrm{mA} = 3,940 \,\mathrm{V}$$

Machen wir einen Maschenumlauf, beginnend in der Mitte rechts.

$$\begin{array}{rcl} U_A - U^* + U_{R^*} & = & 0 & | + U^* - U_{R^*} \\ U_A & = & U^* - U_{R^*} \end{array}$$

Hiermit könnten nun die beiden Ausgangsspannungen für die beiden verschiedenen Belastungen berechnet werden. Letztlich benötigen wir aber nur die Differenz ΔU_A . Da in beide Werte für U_A die Spannung U^* linear eingeht, hebt sich diese beim Bilden der Differenz wieder auf, übrig bleibt nur:

$$\Delta U_A = U_{R^*2} - U_{R^*1} = 3.940 \,\mathrm{V} - 1.940 \,\mathrm{V} = 2 \,\mathrm{V}$$

Hiermit kann nun R_i berechnet werden.

$$R_i = \frac{\Delta U_A}{\Delta I_A} = \frac{2 \text{ V}}{1 \text{ A}} = 2 \Omega$$

Methode 2: Wir haben gesehen, dass der Innenwiderstand R_{1Z} des Spannungsteilers aus R_1 und r_Z näherungsweise r_Z ist. Dazu in Reihe wirkt r_B , wobei in dieser Reihenschaltung r_B dominiert. Die restlichen Widerstandsanteile können vernachlässigt werden.

Der Strom I_{rc} fließt in diesem Modell ständig, kann also für die Differenzen unberücksichtigt bleiben, denn es ist $R_i = \frac{\Delta U_A}{\Delta I_A}$. Für jedes Milliampere Basisstrom fließt ein um den Faktor B größerer Kollektorstrom. Als Ausgangsstrom I_A haben wir die Summe von I_B und I_{C0} , wobei hier wiederum der Basisstrom I_B vernachlässigt werden kann.

Für die Ausgangsspannungsänderung ist ausschließlich der Spannungsfall an $R^* \approx r_B$ verantwortlich. Da hier ein Strom fließt, der um den Faktor B kleiner als I_A ist, wirkt es für den Ausgang so, als ob ein um den Faktor B kleinerer Widerstand verantwortlich wäre. Warum?

$$R_{i} = \frac{\Delta U_{A}}{\Delta I_{A}}$$

$$= \frac{\Delta U_{A}}{B \cdot \Delta I_{B}}$$

$$= \frac{1}{B} \cdot \frac{\Delta U_{A}}{\Delta I_{B}}$$

$$= \frac{1}{B} \cdot \frac{\Delta U^{*}}{\Delta I_{B}}$$

$$R_{i} \approx \frac{1}{B} \cdot r_{B}$$

Zusammengefasst:

$$R_i \approx \frac{r_B}{B}$$

Vergleicht man dieses Ergebnis mit dem zuvor berechneten Ergebnis, dann kann man feststellen, dass die Abweichung so klein ist, dass sie trotz Rundung auch nach der vierten Stelle nicht erkennbar ist.

$$R_i \approx \frac{r_B}{B} = \frac{240\,\Omega}{120} = 2\,\Omega$$

Man kann also sagen, dass bei dieser Schaltung der Widerstand r_B maßgeblich für den Innenwiderstand der Schaltung verantwortlich ist. Teilt man ihn durch die Stromverstärkung, erhält man den Innenwiderstand der Schaltung.